
Make	Better	Software
A	collection	of	interviews	with	makers	about	the	craft	of	software	development,	hiring,	and	technical	leadership

Volume	1

by	Fog	Creek	&	Friends

We	Had	a	Different	Idea...

Fog	Creek	Software	began	in	2000,	after	our	founders,	Joel	Spolsky	and	Michael	Pryor,	had	trouble	finding	a	place	to

work	 where	 programmers	 had	 decent	 working	 conditions	 and	 got	 an	 opportunity	 to	 do	 great	 work.	 At	 that	 time,

developers	 were	 treated	 like	 typists,	 and	 yet	 companies	 still	 complained	 that	 they	 couldn't	 hire	 great	 software

developers,	and	they	struggled	to	make	products	people	actually	wanted	to	use.

So	we	came	up	with	a	different	idea	-	what	if	we	started	our	own	business	where	we	only	recruited	the	best	software

people,	we	treated	them	well,	and	then	got	the	heck	out	of	their	way?

Well,	it	worked.	Since	then	we've	been	creating	great	software	products	that	are	used	and	loved	by	millions	of	people.

These	include:

Let's	Make	The	Future

We	take	a	similar	approach	to	our	products	too.	Rooted	in	a	deep	understanding	of	the	realities	of	building	software,

they're	designed	to	help	you	get	the	job	done.	But	otherwise,	they	get	out	of	your	way	so	you	focus	on	what's	really

important	-	working	together	to	make	things.	Whether	that's	making	code	work	on	Stack	Overflow,	organizing	things	in

Trello,	or	building	software	with	FogBugz	or	HyperDev.

And	what	we're	making	is	the	future.	Far	from	just	being	typists,	our	whole	world	is	now	infused	by	the	software	that

we're	building.	Software	is	waking	us	up	at	just	the	right	time.	It's	hailing	the	cab	and	guiding	us	to	our	next	meeting,	and

it's	finding	us	a	great	place	to	eat	at	the	end	of	a	busy	day.	Our	whole	lives	are	informed	by	and	run	with	software.	And

this	is	only	the	beginning.	So	let's	make	the	future.

Work	Tracking	and	Collaboration
Used	to	manage	over	20,000	software-led	businesses	and	teams

Four	products	that	work	together
-	Tasker:	Task	Management
-	Issue	Desk:	Helpdesk	and	Issue	Tracking
-	Agile:	Agile	Project	Management

-	Dev	Hub:	Software	Development	Management

On	Demand	or	On	Site
With	 On	 Demand,	 FogBugz	 is	 hosted	 by	 us	 in
the	 Cloud	 for	 ease	 of	 access	 and	 flexibility.	 Or

with	 On	 Site,	 you	 can	 host	 it	 on-premises	 for
enhanced	control.	Either	way,	you	get	 the	same
powerful	features	and	world-class	support.

Focus	on	real	work,	not	managing	it

There's	no	time-consuming	setup	or	confusing
customization.	Workflows	are	simple	yet
flexible.	FogBugz	provides	everything	you
need	to	plan,	build	and	ship	software.

Learn	more	at	fogcreek.com/fogbugz

Trusted	By

FogBugz

http://www.fogcreek.com/fogbugz/

1

Part	2:	Hiring	and	Development

The	Interviews

36

Oren	Ellenbogen
Become	the	Leader

Your	Engineers	Need
Practical	tips	for

programmers	who	want	to
lead

Part	3:	Technical	Leadership

18

Kate	Heddleston
How	to	Onboard

Software	Engineers
The	essential	elements	to

effectively	onboard
developers

25

Kerri	Miller
Were	Bad	at

Interviewing
Developers	(and
how	to	fix	it)

Tips	on	running	interviews
and	evaluating	technical

candidates

32

Pat	Kua

From	Developer

to	Tech	Lead 
Making	the	leap	into
technical	management

38

Roy	Osherove
Growing	Self-
organizing

Software	Teams
How	to	develop	teams
with	different	phases	of

leadership

...

22

Cal	Evans
How	to	Find,	Hire,	&

Retain	Developers
Building	a	culture	of	respect
that	lets	you	compete	for

top	talent

28

Joe	Mastey

Building	a	Culture
of	Learning	in

Development	Teams
Creating	an	internal
learning	program

Part	1:	Mastering	the	Craft

5

Edmond	Lau
How	to	Maximize

Your	Impact
Lessons	learned	from	Silicon

Valley's	software
engineering	leaders	

11

Dave	Nicolette

Selecting	Software

Development
Metrics

How	to	pick	the	right	metrics
for	your	team	and	workflow

8

Derek	Prior
More	Effective	Code

Reviews
The	key	elements	to	a	code

review	culture

14

Pete	Goodliffe

Go	Beyond	Code	to

Become	a	Better
Programmer

Pragmatic	tips	to	be	a	more
effective	developer

2

21

10

39

The	Other	Stuff

On	Product	Science	Vs.	Art

David	Miller,	VP	Product	at	Fog	Creek

...

On	the	Danger	of	Clout

Jude	Allred,	CTO	at	Fog	Creek

On	Getting	What	You	Want

Allie	Schwartz,	VP	People	at	Fog	Creek

Creeker	Wisdom

Lessons	learned	at	Fog	Creek

Advice	for	New	Developers

Top	tips	for	those	starting	out	in	software

development

16

30

Ask	the	Experts

What	Makes	Developers	Happy?

Passionate	developers	tell	us	what	makes	them

happiest	whilst	coding

40

Sound	advice	from	successful	software	developers

Recommended	Reading

The	contributors	tell	us	their	favorite	resources

for	development	and	leadership	skills

3

JOEL	SPOLSKY
Co-Founder	of	Fog	Creek,

CEO	of	Stack	Overflow	and

Co-Founder	of	Trello

..

I

A

typing	 code	 into	 a	 computer.	 The	 other	 95%	 is

spent	 trying	 to	 figure	 out	 why	 the	 perfectly

straightforward	 code	 that	 you	 just	 typed	 is	 not

doing	the	perfectly	obvious	thing	that	you	thought

it	should	do.

This	 is	why	 programming	 is	 hard.	 Programming	 is

hard	 because	 computers	 are	 super	 fussy.	 Super

literal.	They	need	 to	have	everything	explained	 to

them	exactly,	down	to	the	smallest	detail,	and	then

they	 become	 maddeningly	 literal	 about	 doing

exactly	what	you	 told	 them	 to	do,	especially	 if,	 it’s

not	what	you	wanted.	

Literally	 every	 other	 job	 is	 easy	 compared	 to

programming.

I	don’t	know,	let’s	say	you’re	a	taxi	driver.	You	get	in

the	 taxi,	 you	 turn	 the	 wheel	 to	 the	 right,	 the	 taxi

goes	to	the	right.	Pretty	much	100%	of	the	time.

Imagine	 what	 it	 would	 be	 like	 if	 you	 turned	 the

wheel	 to	 the	 right,	 and	 	 sometimes	 it	 goes	 to	 the

right,	but	sometimes	 the	radio	goes	on.	Or	maybe

when	 you	 turn	 right	 out	 of	 the	 airport,	 the	 trunk

pops	open.

Foreword

f	 you	 follow	 developers	 around,	 here’s	 what

you’d	 see	 them	 doing.	 The	 first	 thing	 you’d

notice	 is	 that	 about	 5%,	 and	 I	 made	 that

number	 up,	 5%	 of	 their	 time	 is	 spent	 actually

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

A

One	day,	 you	 turn	 right,	 and	 the	whole	 taxi	 literally

disappears	 without	 a	 trace.	 Poof.	 And	 you’re	 just

sitting	on	your	butt	in	the	road	wondering	where	the

taxi	went.

You	 don’t	 know	 why	 this	 happened.	 Maybe	 it’s

because	 your	 passenger	 was	 wearing	 a	 shirt	 with

stripes.	 And	 you	 will	 never,	 ever	 figure	 it	 out,

because	 the	 taxi	 disappeared	 and	 the	 passenger

disappeared.

This	is	what	life	is	like	every	day	for	developers.

Now,	how	do	we	deal	with	this?	Besides	going	crazy.

Because	I’ve	known	some	high	tech	companies	that

literally	hire	staff	psychiatrists.

The	way	you	deal	with	this	is	that	you	ask	people	for

help.	 There’s	 tons	 of	 knowledge	 locked	 away	 in

people’s	heads	 that	can	help	you,	and	 that’s	where

this	magazine	comes	in.

We’ve	 collected	 together	 some	 of	 the	 best

interviews	 with	 smart	 developers,	 about	 software

engineering,	 hiring	 developers	 and	 technical

leadership.	 They've	 found	 ways	 to	 solve	 problems

and	hold	back	the	crazy,	at	least	for	a	little	while.

So	 go,	 read,	 and	 help	 stave	 off	 the	 madness	 of

software	 development	 for	 at	 least	 another	 day.

Maybe	two.	You're	welcome.

4

Mastering	the	Craft

Part	1

5

How	to	Maximize	Your	Impact

Lessons	Learned	from	Silicon	Valley’s	Software	Engineering	Leaders

Start	Out	Right

Lau	 says	 that	 something

he	noticed	early	on	in	his

career	 that	 was

reinforced	 after	 speaking

with	 engineering	 leaders

is	 that,	 “if	 you	 pick	 up

the	 right	 habits,

techniques,	and	mindsets

when	 you're	 starting	 off,

then	 you're	 significantly

more	 likely	 to	 succeed”.

This	 is	 most	 obvious

when	 you	 look	 at	 the

career	 progression	 of

junior	 developers	 in

organizations	 with	 and

without	 effective

onboarding	 programs,

says	Lau.

When	starting	at	Quora

early	 on,	 Lau	 says	 “it

was	 sort	 of	 luck	 of	 the

draw	 whether	 you

would	 have	 a	 good

mentor,	 or	 whether

someone	 would	 explain

to	 you	 core	 concepts	 in

your	 first	 day	 or	 your

first	 week	 or	 your	 first

month.	 People	 who	 got

lucky	 were	 much	 more

likely	 to	 succeed	 and

much	 more	 likely	 to	 be

effective	 many	 months

down	 the	 line”.	 So	 Lau

set	 work	 on	 revamping

their	 onboarding	 to

level	the	playing	field.

						If	you	pick	up

the	right	habits,

techniques,	and

mindsets	when

you're	starting

off,	then	you're

significantly	more

likely	to	succeed

..

Edmond	Lau
Edmond	Lau	is	an	experienced

Software	Engineer	who	has

worked	for	the	likes	of	Google,

Ooyala,	Quora,	and	Quip.	He

spoke	with	engineering	leaders

from	companies	like	Twitter,

Facebook,	and	Stripe,	whilst

writing	his	book	‘The	Effective

Engineer’.	We	interviewed	him	to

understand	what	he	learned

about	maximizing	impact	as	a

software	engineer.

6

..

time	 and	 investments	 that	 he

made	 that	 had	 the	 biggest

return	 was	 just	 building	 tools.

Trying	 to	 automate	 as	 much	 of

the	 mechanics	 of	 what	 they

were	 doing	 as	 possible.	 Every

time	 they	 got	 a	 problem	 and

found	 that	 they	 were	 still

repeating	what	they	were	doing,

they	 would	 write	 a	 tool	 for	 it

and	automate	it.”

Another	 theme	 was	 “just

keeping	things	simple…	when	I

asked	 them	 what's	 the	 biggest

lesson	 or	 the	 most	 valuable

lesson	 you've	 learned	 in	 the

past	 year,	 they	 would	 say	 they

just	 sort	of	made	 things	a	 little

too	 complex”	 and	 that	 things

didn't	work	when	“there	were	a

lot	 of	 operational	 burdens	 to

keep	things	going.”

Optimizing	for	Impact

Keeping	 things	 simple	 and

automating	 repetitive	 tasks	are

great	 examples	 of	 work	 which

optimizes	 the	 impact	 you	 can

have.	This	is	a	key	part	of	Lau's

approach	 to	 engineering	 and	 is

what	 he	 terms	 Leverage,	 and

focusing	on	this	helps	engineers

identify	activities	 that	have	the

most	impact.

“Leverage	basically	means	what

is	 the	 output	 you're	 producing

for	 the	 amount	 of	 time	 you're

investing?	 It's	 a	 metric	 of	 the

impact	 you're	 generating	 per

amount	of	time	that	you	spent.”

So	 to	 be	 “an	 effective	 engineer

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

you	 want	 to	 focus	 on	 the	 high

leverage	 activities.”	 This	 might

seem	 obvious,	 but	 as	 Lau

explains	 it	 can	 be	 hard	 to

actually	 internalize  —  “This	 is

something	 that	 took	 me	 many

years	 to	 learn…	I	used	 to	work

70	 to	 80-hour	 weeks	 because	 I

thought	 that	 was	 how	 hard	 a

team	 had	 to	 work”.	 But	 after

“we	 built	 an	 analytics	 module

for	a	client	and	they	never	used

it,	 or	 when	 we	 would	 build	 a

product	 and	 it	 would	 never	 get

the	 user	 adoption	 that	 we

wanted…	 those	 experiences

made	me	feel	like	working	hard,

putting	in	those	hours	just	isn't

enough.”	Lau	says	that	what	he

then	 learned	 to	 do	 was

“prioritize	 the	 things	 that	 are

actually	 generating	 a	 large

impact	 for	 the	 amount	 of	 time

you're	spending.”

So,	 how	 do	 you	 know	 what	 to

focus	 on?	 “The	 key”	 explains

Lau,	 is	 in	 “setting	 up	 feedback

loops,	 and	 that	 applies	 to

everything	you	do.	For	instance,

when	you’re	writing	software,	it

means	 you	 send	 around	 a

lightweight	 design	 doc	 to	 get

feedback	 on	 your	 design	 before

you	 even	write	 any	 code.	When

you're	 writing	 code	 it	 means…

sending	 your	 code	 to	 code

reviewers	that	are	the	strictest.

The	 ones	 who	 would	 do	 a	 good

job	 of	 critiquing	 what	 you’re

doing.	 If	 you're	 working	 on	 a

product	 it	 means…	 getting

feedback	 from	 gatekeepers	 who

sort	 of	 block	 or	 launch	 as	 soon

as	 possible.	 Then	 when	 you’re

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

The	Importance	of

Onboarding

“Onboarding	 is	 not	 something

where	you	do	it	once	and	you're

done.	It's	something	you	do	very

incrementally,”	 explains	 Lau.

“Start	 by	 documenting

questions	 that	 new	 engineers

are	 asking	 and	 make	 them

reusable	resources.	 If	you	are	a

new	 engineer,	 then	 as	 you	 are

onboarding	 identify	 the	 things

that	 are	 giving	 you	 problems.

What	is	taking	a	long	time	to	do

that	 really	 shouldn't?	 Over

time,	 you	 can	 build	 up	 a

repository	 of	 knowledge	 that

becomes	 much	 more	 useful	 for

new	 engineers	 joining	 the

company.”

As	 an	 example	 of	 this	 Lau

describes	 how	 things	 work	 at

his	 current	 company,	 Quip.

“Any	 time	 we	 are	 building	 new

products	 we	 end	 up	 writing	 a

short	 design	 doc	 that	 is	 then

shared	with	the	team”	and	then

“everybody	 gets	 this	 new	 piece

of	 information”	and	 if	 “someone

ran	 into	 an	 issue	 we	 document

that	 into	 some	 best	 practices.”

What	 this	 means	 is	 that	 over

time	 “we	 end	 up	 with	 lots	 and

lots	of	documents	that	are	really

useful	for		new	engineers.”

Common	Themes

Having	 spoken	 to	 many

engineering	 leaders	about	what

worked	 well	 in	 their	 careers,	 a

number	 of	 common	 themes

emerged.	 Lau	 says	 that	 one

such	 theme	 was	 “focusing	 on

and	 investing	 in	 tooling”.	 For

example	 “when	 I	 talked	 with

Bobby	 Johnson,	 who	 is	 the

former	 Director	 of	 Engineering

for	Infrastructure	at	Facebook”,

Lau	 recalls,	 “one	 of	 the	 biggest

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

						Every	time	they	got	a	problem

and	found	that	they	were	still

repeating	what	they	were	doing,

they	would	write	a	tool	for	it

7

themselves,	 they’re	 not	 really

learning	 day	 to	 day.	 Just	 from

my	own	experience,	when	I	was

at	 Google,	 it	 was	 a	 very

comfortable	 place	 and	 sort	 of

after	my	first	six	months	there	I

learned	 a	 ton…	 but	 after	 two

years	 I	 felt	 like	 I	 wasn’t	 really

challenging	 myself	 anymore,”

explains	Lau.

Another	 way	 he	 has	 developed

himself	is	through	meet-ups	and

swapping	 stories	 with	 other

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

..

						Prioritize	the	things	that
are	actually	generating	a
large	impact	for	the	amount
of	time	you're	spending

building	 or	 iterating	 a	 product,

it	 means	 running	 A/B	 tests	 to

measure	 if	 this	 change	 is

actually	 materially	 improving

the	product	in	some	way.”

Metrics	to	Measure

Impact

To	 monitor	 and	 gauge	 this

feedback	 you	 want	 to	 “pick	 a

metric	that	incentivizes	the	type

of	behavior	that	you	want”.	Lau

gives	 the	 example	 of	 a

Performance	 team	 looking	 to

optimize	 the	 performance	 of

their	product — “the	metric	that

you	 want	 to	 improve	 could	 be

something	 like	 the	 99th

percentile	of	all	load	times.	Or	it

could	be	 the	average	 load	 time.

Either	 of	 those	 metrics	 would

improve	 the	 performance	 of

your	 product,	 but	 they	 have

very	 different	 outcomes.	 If

you’re	 improving	 the	 average

load	 times,	 that	 would	 tend	 to

make	 you	 focus	 on	 general

server	improvements,	but	if	you

were	 focusing	 on	 the	 99th

percentile…	 then	 you’re

focusing	 on	 the	 long	 tail	 of	 the

application.”	So	it’s	important	to

consider	 the	 metric	 you	 choose

carefully,	 as	 “the	 choice	 of

metric	 affects	 the	 type	 of	 work

that	you	focus	on,”	Lau	says.	So

“pick	 the	 metric	 that	 is	 most

aligned	 with	 the	 success	 of	 the

business.”

Developing	as	a	Software

Engineer

Lau	 attributes	 success	 in	 his

career	 to	 having	 purposefully

sought	 out	 job	 opportunities

where	 he	 could	 continue	 to

learn	 new	 things	 and	 push

himself.	 Without	 doing	 this,

Engineers	 can	 end	 up	 “being

stuck	 on	 a	 plateau	 where

they’re	 not	 really	 challenging

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

developers.	 Lau	 comments	 that

“when	 you’re	 working	 on	 a

team,	a	 lot	 of	 times	 the	 lessons

we	 learn	 are	 just	 the	 ones	 that

occur	 during	 the	 projects	 that

you	 work	 on.	 People	 who	 have

either	 had	 similar	 experiences

or	 have	 gone	 through	 other

projects…	can	teach	you	a	ton.”

Read	more	from	Edmond	at:

www.theeffectiveengineer.com

http://www.theeffectiveengineer.com/

8

The	key	elements	to	a	code	review	culture

really	 going	 to	 impact

your	 system,	 you	have

to	 know	 the	 entire

system”.	 So	 whilst

“code	 review	 is	 great

for	 defect	 finding,	 it’s

not	 a	 panacea.

Instead,	 I	 think	 it’s

much	 more	 helpful	 to

focus	 on	 the	 cultural

benefits	 of	 code

reviews”,	says	Prior.

Make	Them	Part

of	Your	Workflow

One	way	to	make	sure

that	 once	 you	 get

started	 with	 code

reviews,	you	stick	with

them	 is	 to	 “take	 a

really,	 lightweight

approach	 to	 it,”

recommends	Prior.	For

instance,	 “when	 I

AAAAAAAAAAAAAA

AA

..

When	 it	 comes	 to	 the

benefits	 of	 code	 review

“everybody’s	 natural

reaction	 is	 to	 say	 that

they	 catch	 bugs.	 That

is	 true.	 If	 I	 have	 code

reviewed	that’s	going	to

have	 fewer	 bugs	 than

code	 that	 isn’t

reviewed.	 But	 I	 think

that	that	puts	too	much

importance	 on	 the

‘finding	 bugs’	 part,”

says	 Prior.	 “It’s	 much

more	 helpful	 to	 focus

on	the	cultural	benefits

of	 code	reviews,”	which

for	 him	 are	 many.

From	 “sharing

knowledge	 with	 each

other,	 or	 keeping	 up

with	 what	 everybody’s

doing”	 to	 “knowing

what’s	going	on	 in	that

other	 part	 of	 the	 code

base	 and	 finding	 a

AAAAAAAAAAAAAAA

A

Derek	Prior	is	Development

Director	at	Thoughtbot,	where

they	have	a	strong	code	review

culture.	In	this	interview,	Derek

shares	the	benefits	of	code

reviews	and	the	essential

elements	he	thinks	you	need	to

make	them	effective.

really	 interesting

alternative	 solution	 to

a	 problem	 that	 they

hadn’t	thought	of.”

More	Than

Catching	Bugs

For	 Prior,	 the	 benefits

of	 code	 review	 go	 way

beyond	 simply	 defect

finding  —  “finding

defects	 is	 actually,

frankly,	 really	hard.	A

lot	 of	 times	 I’ll	 talk	 to

people	 about	 code

reviews,	 and	 they’ll

say,	 ‘well	 we	 did	 code

reviews,	 but	 we	 still

had	 all	 these	 bugs’.

But	 they’re	 not	 going

to	 catch	 all	 the	 bugs.

You’re	 looking	 at	 the

diff,	 and	 to	 know

exactly	 how	 that’s

AAAAAAAAAAAAAA

AA

More	Effective	Code	Reviews

Derek	Prior

									It's	much

more	helpful	to

focus	on	the

cultural	benefits

of	code	reviews

9

..

sometimes	 even	 a	 week,	 or

whatever	 the	 case	may	be.	You

have	a	lot	of	context	built	up	in

your	 head.	 Some	 things	 seem

really	 obvious	 to	 you	 at	 this

point”.	 The	 thing	 to	 remember

though	 is	 that	 “to	 the	 person

reviewing	 it,	 they	 weren’t

there…	 they	 don’t	 have	 that

context”.	 “It	 really	 helps	 if

you’ve	 been	 making	 several

small	 commits	 along	 the	 way,

where	 you’re	 describing	 what

was	 in	 your	 head,”	 but

regardless,	 “as	 you	 prepare	 the

change…	make	 sure	 you	 give	 a

nice	description	of	everything.”

This	 description	 should	 answer

the	 question	 “Why	 are	 we

changing	 it?,”	 says	Prior.	Other

considerations	 are	 “why	 is	 this

the	 best	 solution?	 What	 other

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

What	 to	Cover	 in	a	Code

Review

“Part	 of	 what	 I	 think	 makes

code	review	so	great,	is	that	it’s

a	great	place	to	have	a	technical

discussion	 about	 your	 actual

software.	 Rather	 than	 in	 the

abstract,”	says	Prior.	He	doesn’t

subscribe	 to	 the	 idea	of	using	a

checklist	 or	 specific	 items,

suggesting	 a	 more	 relaxed

approach —  “just	 look	 at	 things

that	 interest	 you	 about	 a

change”.	 “Maybe	 you	 just	 got

finished	reading	this	great	book

on	 design	 patterns.	 That’s

valuable.	 You’re	 going	 to	 teach

somebody	something.	Or	maybe

you’re	 really	 interested	 in	 web

security…	 or	 accessibility.”	 For

me,	 says	 Prior	 “I	 harp	 on

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

						It	really	helps	if	you've
been	making	several	small
commits	along	the	way

finish	 up	 a	 PR,	 I	 will	 paste	 it

into	 Slack,	 or	 whatever.	 We’ll

paste	that	in	and	say,	‘can	I	get

a	 review	 for	 this	 please?’	 and

generally,	 that’s	 enough,	 with

the	 way	 we	 work,	 to	 get	 your

code	 reviewed	 within	 the	 next

few	hours,”	Prior	says.

A	 fast	 turn	 around	 on	 code

reviews	 is	 important,	 and	 it

doesn’t	 have	 to	 be	 burdensome

to	 stay	 on	 top	 of	 them.	 Prior

suggests	 that	 there	 are	 in	 fact

“a	 lot	 of	 natural	 breaks

throughout	 your	 day	 that	 you

can	 work	 these	 in”.	 “For	 me,	 I

come	 in	 in	 the	 morning”	 and

catch	 up	 on	 any	 code	 reviews

from	 overnight.	 “Then,	 right

before	 lunch,	 or	 in	 the

afternoon,	if	I’m	going	to	take	a

coffee	 break…	 I’ll	 look	 then”.

“There’s	 plenty	 of	 times	 I	 find,

that	 I	 can	 just	 work	 these	 in

naturally.	 There’s	 no	 need	 to

schedule	them.	I’ve	worked	with

teams	 that	 try	 to	 schedule

them,	or	try	to	say,	 ‘this	person

is	 going	 to	 be	 the	 one,	 that’s

going	 to	 be	 chiefly	 doing	 code

reviews	 this	 week’,	 and	 I’ve

never	 seen	 that	 work

particularly	well”.

Instead,	 you	 just	 need	 to	 “keep

it	 lightweight	 and	 friendly,”

says	 Prior.	 “The	 biggest	 thing

that	 makes	 this	 work	 is,

keeping	 small,	 discrete	 pull

requests,	 that	 are	 going	 to	 be

much	 more	 easily	 reviewed	 if

you	 provide	 some	 excellent

context.	 That’s	 the	 ‘why’	 you’re

making	 this	 change,	 not

necessarily	 the	 ‘what’”.	 But

“ultimately,	 the	 big	 secret	 to

this”,	 confesses	 Prior,	 “is	 that

most	of	 these	code	reviews	only

take	me	five	minutes.	 It’s	not	a

big	commitment.”

naming	 a	 lot…	 I	 look	 for	 test

coverage.”	 Whatever	 it	 is,	 so

long	 as	 you	 have	 “a	 good	 blend

on	your	team,	of	people	who	are

interested	 in	 different	 things”

then	 you	 “can	 all	 learn	 from

each	other.”

Context	is	Key

“The	 number	 one	 thing	 is

context,”	 says	 Prior.	 “When

you’re	 submitting	 a	 pull

request,	you’ve	been	working	on

this	 thing	 for	 four	 hours,	 or

eight	 hours,	 or	 two	 days,	 or

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

solutions	 did	 you	 consider?

What	 problems	 did	 you	 run

into?	 Is	 there	 an	 area	 of	 the

code	 you’re	 really	 unsure

about?”	These	will	all	“help	you

get	 a	 much	 better	 review,	 by

setting	 up	 everybody	 else	 to	 be

on	the	same	page	as	you”,	Prior

says.

Keep	Reviews	Positive

Prior	 warns	 that	 “when	 code

reviews	aren’t	done	particularly

well,	 or	are	overly	 critical,	 they

can	 lead	 to	 resentment	 among

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

10

						Having	conflict	in	your

code	reviews	like	this,	is

actually	really	beneficial

a	 monoculture.	 You	 want

everybody	 bringing	 their	 own

experiences,	 and	 their	 own

expertise,	 and	 sometimes	 those

are	 going	 to	 clash	 with	 each

other”.	 But	 if	 you	 can	 “handle

those	 conflicts	 properly”,	 says

Prior,	 then	 that’s	 “how

everybody	 on	 the	 team	 is	 going

to	learn.”

Derek	 co-hosts	 the	 Bike	 Shed

podcast:	www.bikeshed.fm

..

the	 team”.	 One	 thing	 that	 you

must	be	aware	of	though	is	that

written	communication	is	prone

to	negativity	bias,	says	Prior.	“If

I’m	talking	to	you	and	I	give	you

some	 technical	 feedback,	 and	 I

say,	‘oh,	why	didn’t	you	use	this

pattern	 here’,	 you’re	 going	 to

perceive	that	in	one	way.	But	if

I	 say	 that	 same	 exact	 thing

written	 down,	 it	 comes	 off	 as

more	 harsh.	 You’re	 going	 to

perceive	 that	 more	 negatively.

It’s	 much	 more	 subject	 to	 your

particular	 mood.	 I	 can’t

influence	 it	 with	 the	 way	 I	 say

something.	 It’s	 just	 a	 fact	 that,

the	 same	 feedback	 written,	 is

going	 to	 be	 perceived	 more

negatively”.	 So	 this	 is

something	 that	 should	 be

considered	in	code	review	too.

Prior	 recommends	 an	 excellent

way	 around	 this	 is	 to	 “give

feedback	 in	 a	 manner	 that’s

more	 of	 a	 conversation.	 What	 I

like	 to	 do	 is	 ask	 questions…

Instead	 of	 saying,	 ‘extract	 the

service	 object	 here	 to	 reduce

some	 of	 this	 duplication’,	 I

would	 say,	 ‘hey,	 what	 do	 you

think	about	extracting	a	service

object	 here,	 to	 eliminate	 this

duplication?’	 They’re	 very

similar	 comments,	 but	 now	 I’m

opening	it	up	to	a	conversation,

by	 asking	 you	 a	 question”.

Another	suggestion	Prior	makes

is	 “clarifying	 how	 strongly	 you

feel	about	a	piece	of	feedback.”

Nevertheless,	from	time	to	time

conflict	 will	 still	 occur.	 But	 for

Prior,	 “having	 conflict	 in	 your

code	 reviews	 like	 this,	 is

actually	 really	 beneficial…	 as

long	as	they’re	the	right	types	of

conflict	 and	 nobody	 feels	 bad

about	them	afterwards.	If	you’re

agreeing	 with	 your	 teammates

all	 the	 time,	 and	 nothing

interesting	is	happening	in	your

code	reviews,	you	basically	have

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

Creeker	Wisdom
"You	have	to	 learn	to	ask	for	what	you	want.	Part

of	 your	 manager's	 job	 is	 to	 have	 conversations

with	 you	 about	 career	 development,	 your	 salary,

etc.	 So	 don't	 be	 afraid	 to	 broach	 those	 subjects,

even	if	you're	at	the	bottom	of	the	food	chain,	and

know	 your	 value.	 Work	 hard,	 and	 be	 your	 own

advocate!

…	And	if	you're	working	for	someone	who	doesn't

value	you,	leave.	Immediately.	No	job	is	worth

feeling	bad	for	every	day.	The	odds	are	you	won't

do	good	work	in	that	environment	anyway.	Take

your	toys	and	go,	something	better	awaits	you!"

-	Allie	Schwartz,	VP	People	at	Fog	Creek

http://bikeshed.fm/

11

										People	either	overlook	or
underestimate	the	effects	of
measurement	on	behavior

Dave	Nicolette	is	a	consultant

specializing	in	improving	software

development	and	delivery

methods.	We	spoke	to	him	about

software	development	metrics —

the	factors	to	consider	when

selecting	metrics,	examples	of

useful	metrics	as	well	as	common

mistakes	made	in	applying	them.

“But	 I	 think	 it	 is	 a	 necessary

thing.	It’s	part	of	the	necessary

overhead	 for	 delivering.	 If	 we

can	 detect	 emerging	 delivery

risks	 early,	 then	 we	 can	 deal

with	them.	If	we	don’t	discover

them	until	late,	then	we’re	just

blindsided	 and	 projects	 can

fail”.

Through	 his	 work	 Nicolette

has	 worked	 with	 countless

technical	 managers,	 but	 he’s

observed	 that	 “a	 lot	 of

managers,	 team	 leads	 and

people	 like	 that,	 don’t	 really

know	what	 to	measure”.	What

usually	happens	 is	 that	 “when

people	 adopt	 a	 new	 process	 or

method”,	 usually	 one	 of	 two

things	happens,	says	Nicolette.

Either,	 they’re	 “only	using	 the

process	 in	 name	 only,	 or

they’re	 trying	 to	 use	 it	 but

they’re	 not	 used	 to	 it	 yet,	 and

the	 metrics	 don’t	 quite	 work.”

Or	 despite	 changing	 methods,

they	 continue	 to	 measure	 in

the	same	way — “people	tend	to

use	 the	 measurements	 that

they’re	accustomed	 to.	They’ve

always	 measured	 in	 a	 certain

way,	 now	 they’re	 adopting	 a

new	 process.	 They	 keep

measuring	 the	 same	 things	 as

before.”	 So	 the	 metrics	 don’t

quite	 match	 the	 process	 and

they	 wrongly	 interpret	 a

problem	with	the	process	itself.

Another	 common	 mistake

Nicolette	 has	 noticed	 with

development	 metrics,	 is	 that

“people	 either	 overlook	 or

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

work	 actually	 flows	 in	 your

organization	 and	 measure

that.”	 Now,	 of	 course,	 that’s

easier	 said	 than	 done.	 But	 he

asserts	 that	 there	 are	 really

just	 “three	 factors	 to	 judge

which	metrics	are	appropriate.”

“The	first	factor	is	the	approach

to	 delivery,”	 says	 Nicolette.

There’s	 traditional,	 which	 is

where	 you	 “try	 to	 identify	 all

the	risks	in	advance…	lay	out	a

master	 plan,	 and	 you	 follow

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

"I

A

A

underestimate	 the	 effects	 of

measurement	 on	 behavior.	 We

can	be	measuring	something	for

some	 objective	 reason,	 but	 it

causes	 people	 to	 behave

differently	 because	 they’re

afraid”	 that	 it	 will	 negatively

impact	 their	 “performance

review.”	 So	 Nicolette	 says,	 “I

think	 we	 have	 to	 be	 very

conscious	 of	 that.	 We	 don’t

want	 to	 drive	 undesired

behaviors	 because	 we’re

measuring	 things	 a	 certain

way.	 That	 not	 only	 breaks

morale,	 but	 it	 also	 makes	 the

measurements	 kind	 of	 useless

too	when	they’re	not	real.”

Factors	to	Consider

When	Selecting	Metrics

Nicolette	suggests	that	when	it

comes	 to	 metrics,	 all	 we	 really

need	 to	 do	 is	 “look	 at	 the	 way

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

don’t	 actually	 find

metrics	 to	 be	 an

interesting	 topic,”

says	Nicolette.

How	to	pick	the	right	metrics	for	your	team	and	workflow

Selecting	Software	Development	Metrics

Dave	Nicolette

..

12

that	 plan.”	 Or	 there’s	 another	 type,	 adaptive,	 where	 “you	 start	 with	 a

direction	and	an	idea	of	how	to	proceed.	Then	you	solicit	feedback	frequently

so	 you	 can	 make	 course	 corrections.”	 According	 to	 Nicolette,	 the	 delivery

type,	“traditional	versus	adaptive…	has	the	biggest	impact	on	which	metrics

will	work.”

Nicolette	 says	 that	 “the	 second	 factor	 to	 look	 at	 is	 the	 process	 model.”

“Nobody	does	anything	in	a	pure	way,	but	 if	you	boil	 it	down	I	think	there

are	 basically	 four	 reference	 models	 we	 can	 consider.	 One	 is	 linear…	 the

canonical	 steps	 that	we	go	 through	 from	requirements	 through	 to	 support.

He	 says	 that	 “the	 next	 one	 would	 be	 iterative,	 in	 which	 you	 revisit	 the

requirements	 multiple	 times	 and	 do	 something	 with	 them.	 The	 third	 one

that	I	identify	is	time-boxed.	It’s	really	popular	nowadays	with	processes	like

Scrum	and	so	on.	The	fourth	one	 is	a	continuous	flow.	This	 is	popular	now

with	the	Kanban	method,	and	it’s	also	being	adapted	into	Scrum	teams	quite

a	 lot.	 And	 it’s	 where	 we’re	 really	 interested	 in	 keeping	 the	 work	 moving

smoothly.”

But	Nicolette	is	a	pragmatist	and	knows	that	any	“real	process	is	going	to	be

a	hybrid	of	these,	but	it’s	been	my	observation	that	any	real	process	will	lean

more	 toward	one	of	 those	models	 than	 the	others,	and	 that’ll	 give	us	 some

hints	about	what	kind	of	metrics	will	fit	that	situation,”	he	says.

Lastly,	the	third	factor	Nicolette	says	impacts	which	metrics	are	relevant	“is

whether	 you’re	 doing	 discrete	 projects	 or	 continuous	 delivery”.	 “I	 look	 at

those	three	 factors,	and	based	on	that	you	can	come	up	with	a	pretty	good

starter	set	of	things	to	measure,	and	then	you	can	adapt	from	there.”

..

									Look	at	the

way	work	actually

flows	in	your

organization	and

measure	that

13

approximately	 they	 could

deliver	a	given	amount	of	scope.

It	depends	on	what’s	flexible.	In

this	 kind	 of	 a	 project,	 usually

neither	 is	 flexible,	 but	 at	 least

you	can	get	an	early	warning	of

delivery	risk.”

“One	 thing	 that	 might	 surprise

some	people,”	says	Nicolette,	“is

the	idea	that	agile	methods	can

be	 used	 with	 traditional

development.	 We	 need	 to

decouple	 the	 word	 ‘agile’	 from

‘adaptive’	because	quite	often	 it

is	used	in	a	traditional	context.”

Optimizing	Kanban

Processes

Scenario:	 A	 team	 wanting	 to

optimize	their	working	practices

to	stay	on	top	of	a	bug	queue.

Typically	 “you	 want	 to	 be

somewhat	 predictable	 in	 your

service	time,”	says	Nicolette,	“so

that	when	a	bug	report	comes	in

people	 have	 an	 idea	 of	 when

they	 can	expect	 to	 see	 it	 fixed.”

To	be	able	to	calculate	this	“you

can	 use	 empirical	 information

from	 past	 performance	 with

fixing	 bugs,	 and	 your	 mean

cycle	 time	 will	 give	 you

approximately	how	long	it	takes

to	fix	one.”

However,	 “I	 like	 to	 use	 the

Kanban	method	 for	 these	kinds

of	 teams	 because	 it	 defines

classes	 of	 service.	 You’ll	 find

that	 every	 type	 of	 bug	 doesn’t

take	the	same	amount	of	time	to

fix,”	 cautions	 Nicolette.	 So

“based	on	your	history,	pick	out

different	 categories.	 You	 can

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

Example	Scenarios

To	 understand	 how	 these

factors	can	be	applied,	here	are

some	 example	 scenarios,

detailing	the	relevant	metrics.

Metrics	for	Agile	Teams

Scenario:	 An	 agile	 team,

working	 in	 short	 sprints,	 who

are	 struggling	 to	 ship	 a	 new

product.

Nicolette	 says,	 that	 “if	 they’re

using	Scrum	basically	correctly,

they	 could	 probably	 depend	 on

the	 canonical	 metrics	 that	 go

with	that,	like	velocity	and	your

burn	 chart.	 You	 might	 look	 for

hangover,	 that’s	 incomplete

work	 at	 the	 end	 of	 the	 sprint.

You	 might	 look	 for	 a	 lot	 of

variation	 in	 story	 size,	 when

you	 finish	 a	 story	 in	 one	 day

and	 the	 next	 story	 takes	 eight

days.”	 Interestingly,	 “you	 can

always	 use	 lean-based	 metrics

because	 they’re	 not	 really

dependent	 on	 the	 process

model…	 so	 they	 could	 look	 at

the	mean	cycle	times	as	well	as

the	variation	in	cycle	times	and

get	 some	 hints	 about	 where	 to

go	 from	 root-cause	 analysis.

Metrics	 don’t	 tell	 you	 what’s

wrong,	 but	 they	 can	 raise	 a

flag,”	says	Nicolette.

Metrics	for	Hybrid

Waterfall-Agile	Teams

Scenario:	 A	 hybrid	 waterfall-

agile	 team	 working	 on	 a	 long-

term	 project,	 wanting	 to	 know

what’s	 possible	 to	 deliver	 by	 a

certain	date.

“To	 know	 what’s	 possible	 to

deliver	 you	 can	 use	 a	 burn

chart,	burn	up	or	burn	down	as

you	 prefer,”	 suggests	 Nicolette.

This	 would	 help	 them	 see

“according	to	their	velocity,	how

much	 scope	 they	 can	deliver	by

a	 given	 date.	 Conversely,	 you

could	 see	 by	 what	 date

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

						If	we	can	detect	emerging	delivery

risks	early,	then	we	can	deal	with	them.	If
we	don't	discover	them	until	late,	then
we're	just	blindsided	and	projects	can	fail

..

identify	 the	 characteristics	 of

particular	 kinds	 of	 bug	 reports

that	 tend	 to	 fall	 together,	 and

you	 can	 track	 cycle	 times

differently	 for	 each	 of	 those

classes	of	service.”

Rolling-up	Metrics	for

Development	Management

Scenario:	 A	 CTO	 who	 wants	 to

monitor	 how	 teams	 are

performing	and	ensure	code	is	of

high	quality.

Nicolette	 recommends	 in	 order

to	measure	 “how	 the	 teams	are

performing,	 you	 need

measurements	 that	 are

comparable	 across	 teams	 and

comparable	 across	 projects.”	 To

to	 this	 end,	 he	 recommends

“tracking	 throughput,	 cycle

time”	 and	 “process	 cycle

efficiency”	 as	 “those	 roll	 up

nicely.”	However,	he	warns	that

“some	 other	 metrics	 don’t	 roll

up	so	well” — “like	agile	metrics,

particularly	 velocity,	 which	 is

really	different	for	each	team”.

“The	 other	 question	 about	 code

quality	I	think	should	be	a	team

responsibility.	 Then	 they	 can

use	 metrics,	 and	 static	 code

analysis	tools	to	help	them	spot

potential	 quality	 issues.	 But	 I

wouldn’t	 share	 details	 outside

the	 team,	 because	 then

members	 will	 feel	 like	 they’re

getting	 judged	 on	 that	 and

they’ll	game	the	numbers.”

Read	more	from	Dave	at:

davenicolette.wordpress.com

https://davenicolette.wordpress.com/

14

Go	Beyond	Code	to	Become	a	Better	Programmer

Many	of	us	want	to	become	better	programmers,	but	how	exactly	do	you	go	about	doing	that?

So	 where	 to	 start?	 For

Goodliffe,	 it	 starts	 with

having	 the	 right	attitude

—  “The	 standout

difference	 between	 the

really	 good	 coders	 that

I’ve	worked	with	and	the

ones	that	aren’t	so	great,

is	 attitude,”	 says

Goodliffe.

“It’s	 not	 a	 hand-wavey

thing.	 I’ve	 worked	 with

people	 who	 know

technology,	 who	 know

the	idioms,	and	how	to	do

all	this	stuff.	But,	if	they

don’t	 have	 the	 right

attitude,	 they’re	 just	 not

effective	 programmers

and	 they’re	 not	 great

people	 to	work	with.	The

kind	 of	 stuff	 I’m	 talking

about	 here	 is	 humility.

You	 don’t	 want	 to	 work

with	 people	 who	 think

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

they	 know	 it	 all	 but

don’t.	 Being	 humble	 is

the	key	thing.	It	doesn’t

mean	 that’s	 an	 excuse

to	 not	 know	 stuff,	 but

it’s	 just	 not	 believing

that	 you’re	 better	 than

you	really	are”.

You	 can	 develop	 this

humility	 by	 “being	 in	 a

state	 of	 constant

learning…	 so	 looking

for	new	stuff,	absorbing

new	 knowledge,

wanting	 to	 learn	 off	 of

other	 people,”	 explains

Goodliffe.	 “It	 doesn’t

necessarily	 mean	 be	 a

perfectionist	 and

wanting	 to	 make

everything	 perfect

before	 you	 ship.	 It’s

doing	 the	 best	 you	 can

in	 the	 time	 you	 have,

with	 the	 resources	 you

AAAAAAAAAAAAAAA

A

..

Pete	Goodliffe
Pete	Goodliffe	is	a	programmer

and	software	development	writer

who	has	authored	two	books,

‘Code	Craft’	and	‘Becoming	a

Better	Programmer’.	Both	provide

advice	to	Software	Developers

on	how	to	hone	their	skills	and

become	better	programmers.	We

interviewed	him,	and	he	told	us

why	you	have	to	go	beyond	code

to	become	a	better	programmer.

Photo	by	Skyfaller

have.	 But	 that	 kind	 of

attitude	 really	 drives

through	to	great	code”.

Write	Less	Code

Another	 way	 he

suggests	 that	 you	 can

improve	 your	 code	 is	 to

write	 less	 of	 it.	 “It

seems	 kind	 of	 counter-

intuitive	 for	 a	 coder…

but	it’s	entirely	possible

to	 write	 thousands	 of

lines	 of	 code	 and

achieve	 nothing	 in	 it.

Think	 about	 it  —  no

unnecessary	 logic,	don’t

write	 stuff	 that	 doesn’t

need	 to	 be	 said,	 don’t

write	 verbose	 code.

Sometimes	 you	 can

stretch	 out	 boolean

expressions	 into

massive	 If	 statements

AAAAAAAAAAAAAAA

A

15

write	concise,	clear	descriptions,

they	 can	 follow	 a	 line	 of

argument	 by	 writing	 and

explaining	 something	 really

well.	 Other	 people	 struggle	 to

put	it	together	in	words”.	So	he

suggests	 that	you	should	 “learn

how	you	communicate	well,	play

to	 your	 own	 strengths	and	pick

the	right	medium”.

Handle	Complexity

“The	 reason	 people	 pay	 us	 to

write	 software,	 unless	 we’re

doing	 it	 for	 fun,	 is	 because

there’s	 a	 complicated	 problem

that	 needs	 to	 be	 solved,”	 says

Goodliffe.	 “There	 is	 some

necessary	 level	of	 complexity	 in

software	 engineering	 and	 we

have	 to	 embrace	 and

understand	 that”.	 Yet	 many	 of

us	 fall	 into	 the	 trap	 of	 writing

code	 that	produces	unnecessary

complexity.	 So	 Goodliffe

suggests	 that	 what	 we	 should

always	 aim	 for	 is	 to	 produce

code	that	“when	you	look	at	it,	it

looks	 obvious.	 That	 is	 the	 key

hallmark	 of	 some	 excellent

code…	 you	 know	 it	 wasn’t

simple	 to	 write.	 But	 when	 you

look	at	 it,	 the	solution’s	simple,

the	 shape	 is	 simple.	 All	 I	 can

say	 is,	 that’s	 what	 we	 should

strive	for”.

Sometimes	though,	this	is	taken

out	 of	 our	 hands	 and	 we’re

landed	 into	 the	 middle	 of	 a

messy	 codebase.	 When	 this

happens,	 “the	 most	 important

thing…	 is	 to	 ask	 people,”

advises	 Goodliffe.	 “I	 see	 so

many	developers	who	just	won’t

sort	 of	 swallow	 their	 pride	 and

say,	 ‘I	 don’t	 quite	 know	 what

this	 is	 doing,	 but	 I	 know	 Fred

over	 there	 does.	 I’ll	 just	 talk	 to

Fred	 about	 it.’	 It’s	 often	 those

little	 bits	 of	 insight	 that	 can

give	 you	 a	 super-fast	 route

through	something	intractable,”

Goodliffe	says.	What’s	more,	all

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

..

too	often	we	“pick	up	some	code,

look	at	it,	and	think	‘that’s	a	bit

dodgy	 isn’t	 it…	what	were	 they

thinking?”	 What	 we	 forget

though	is	this	happens	with	our

code	 too.	 “Somebody	 else	 picks

it	 up,	 and	 they’ll	 make	 that

same	 judgement	 call	 on	 my

code,”	 says	 Goodliffe.	 So	 what

we	 need	 to	 remember	 is	 that

“what	 I	 might	 think	 is	 some

terrible	 hack,	 is	 probably	 some

pragmatic	 thing	 they	 did	 for	 a

very	 good	 reason.”	 After	 all,

“nobody	goes	out	of	their	way	to

write	 messy	 code…	 I	 can’t	 say

that	 I’ve	 found	 anyone	 that

really	tried	to	ruin	a	project.	So

approach	 code	 with	 that

attitude,”	cautions	Goodliffe.

Sit	at	the	Feet	of	Great

Coders

Regardless	 of	 our	 own	 skills

though,	Goodliffe	says	that	“the

biggest	 thing	 for	 me…	 is	 to	 sit

at	 the	 feet	 of	 great	 coders.	 I

have	 learned	 the	 most	 in	 my

career	when	I	have	been	around

excellent	people	who	I	can	learn

off	 of.	 Whose	 skills	 can	 rub	 off

on	me	and	I	have	moved	jobs.	I

have	 moved	 physically	 to	 be

able	to	work	with	those	people”.

This	can	be	motivating,	and	it’s

important	 to	 keep	 stoking	 our

passion	 for	 programming.	 “I’m

enthusiastic.	 I	 love	 this	 stuff,”

says	Goodliffe,	and	“if	you	have

an	enthusiasm,	that	passion	for

programming,	it	tells	out	in	the

code	that	you	write”.

Read	more	from	Pete	at:

www.goodliffe.net

which	 just	 hide	 what	 is	 being

said”.	 Ultimately	 for	 Goodliffe

this	 means	 writing	 “simple	 but

not	 simplistic	 code.	 If	 you	don’t

write	enough	code,	 it	doesn’t	do

what	it’s	supposed	to	do.	But	by

avoiding	 all	 points	 of	 needless

generality,	like	making	abstract

interfaces,	 or	 deep	 hierarchies

that	don’t	need	to	be	extended,”

then	 you	 can	 write	 much	 more

effective,	concise	code.

Communicate	Effectively

Goodliffe	 is	also	adamant	about

the	 need	 for	 programmers	 to

communicate	 well.	 “Code	 is

communication.	 You’re

communicating	 not	 just	 with

the	 computer,	 you	 are

communicating	 to	 other	 people

writing	the	code.	Even	if	you	are

working	 by	 yourself,	 you	 are

communicating	with	yourself	 in

two	 years	 time	 when	 you	 pick

up	 the	 same	 section	 of	 code”.

And	 this	 is	 something	 that

needs	 to	 be	 kept	 in	 mind,	 says

Goodliffe.	 “It’s	 a	 skill,	 and	 it’s

something	 you	 learn,	 and	 it’s

something	 you	 need	 to

consciously	 practice.	 And	 yet,	 I

don’t	 know	 of	 courses…	 that

really	focus	on	something	that’s

really	 quite	 an	 important	 skill

for	programmers,”	and	so	it	can

often	be	overlooked.

Of	 course,	 we	 aren’t	 all	 the

same	 and	 our	 aptitude	 for

communication	 differs.	 But	 it’s

important	 to	 recognize	 your

communication	 strengths,

suggests	 Goodliffe.	 “Some

people	 can	 talk	 well,	 some

people	are	shy	and	retiring,	but

that	 doesn’t	 necessarily	 mean

you	 are	 stuck	 like	 that.	 That

doesn’t	 necessarily	 make	 you	 a

bad	communicator.	Some	people

communicate	better	 in	different

media	 and	 it’s	 worth	 bearing

that	 in	 mind.	 Some	 guys	 are

really	 great	 on	 email,	 they	 can

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

http://www.goodliffe.net

16

..

						"Work	on	a	bunch	of	personal
projects	and	contribute	to	Open-
Source.	Consuming	information	is
one	thing,	but	if	you	don't	build
things	you	won't	remember	it."

Brian	Bondy,	Co-Founder	at	Brave,	prev.	Senior
Engineer	at	Khan	Academy	and	Mozilla

						"Get	involved	with	the
developer	community:	contribute	to

an	Open-Source	project,	answer
questions	on	StackOverflow,	join	a
local	User	Group,	etc.	Constantly

engaging	with	other	people	will
help	push	you	to	grow	as	a
developer."

Jared	Parsons,	Principal	Developer	on	the	C#
Language	Team	at	Microsoft

						"Don't	fragment	your	forces	into
too	many	pieces.	Focus	on	the
intersection	of	things	that	at	the

same	time	you	find	valuable,	and
many	people	find	valuable."

Salvatore	Sanfilippo,	Creator	of	Redis

						"Good	developers	will	quickly

reach	a	point	where	just	writing
correct	code	is	not	enough;	they've
got	to	teach	others	how	to	use	it,	or
convince	them	that	the	change	is
correct.	Communication	is	key."

Eric	Lippert,	Software	Engineer	at	Facebook
and	author	of	‘Essential	C#’

						"Figure	out	what	you're	passionate

about	and	do	it.	That	might	sound
obvious,	but	focus	and	persistence	are
important	for	success,	and	both	require
passion."

Lindi	Emoungu,	Senior	Software	Engineer	at	Google

						"Write	code	you	don't	know	how	to
write,	tackle	problems	you	don't	know
how	to	solve.	More	importantly,	learn

things	you	don't	want	to	learn.	If	it
looks	boring	or	if	it	looks	too	hard,

study	it."

Dusty	Phillips,	Software	Engineer	at	Facebook

						"Be	rigorous!	When	I	was	younger,	I

thought	the	only	thing	that	mattered	was
having	a	working	project.	That	attitude
slowed	me	down	because	it	kept	me

from	understanding	some	things	deeply."

Mary	Rose	Cook,	Makers	Academy

						"Don't	try	to	learn	without	a
purpose.	The	desire	to	learn	a	new	skill

is	driven	by	curiosity.	Try	to	build
something,	find	a	problem,	and	learn
only	to	solve	it."

Dayle	Rees,	Prev.	Head	of	Engineering	at	JustPark,
now	at	Crowdcube

Expert	Advice	for	New	Developers

We	asked	some	old	pros	their	top	tips	for	those	starting	out	in	software	development

17

Hiring	and	Development

Part	2

18

There	 are	 2	 ways	 to	 get

great	 engineers	 at	 your

company.	 You	 can	 steal

them	 or	 you	 can	 make

them.”	 says	 Heddleston.

“In	 this	 day	 and	 age,

you’d	 probably	 better

have	 outlets	 for	 both”,

but	 you	 should	 at	 least

have	 “a	 sustainable

program	 of	 bringing	 on

junior	engineers”.

The	Benefits	on

Onboarding

“We	 spend	 a	 huge

amount	 of	 money

recruiting	 and	 sourcing

engineers”	 and	 then	 “we

pay	 them	 huge	 sums	 of

money	 to	 work”	 for	 us.

But	all	 too	often	when	 it

comes	 to	 onboarding

these	valuable	engineers,

the	 approach	 is	 just  —

“you’ll	figure	it	out,”	says

Heddleston.

The	 result	 is	 that	 “we’re

underutilizing	 people,

which	 is	 expensive	 for

companies,	 and	 people

are	 unhappy	 when	 they

aren’t	 fulfilling	 their

potential	 and	 that	 can

lead	 to	 attrition”.	 The

answer	 to	 this	 problem

for	 Heddleston	 is

onboarding.	 “The	 return

on	 investment	 is

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

incredible…	 you	 get	 so

much	 more	 out	 of

employees	 who	 are

happy	 and	 productive

and	 feel	 integrated	 into

the	team.”

Getting	Started	with

Onboarding

“The	 goal	 with

onboarding	is	what	I	call

reliable	 independence”,

says	 Heddleston.	 This	 is

when	“someone	is	able	to

reliably	 and

independently	 build

software	 on	 your	 team.

For	 someone	 who	 is

really	 senior,	 that	 might

take	 2	 weeks…	 for

someone	 really	 junior,

that	 might	 take	 more

like	6	months.”

However,	 according	 to

Heddleston,	 the	 time-

frame	 for	 reliable

independence	 “varies

hugely	 depending	 on	 the

size	 of	 the	 company	 and

the	 quality	 of	 their

internal	 tools.”	 A

common	 issue	 among

fast-growing	startups,	for

instance,	 is	 that

“everyone	has	to	come	in

and	 manually	 set	 up

everything…	 and	 that’s

just	 going	 to	 bottleneck

your	company.”	So	before

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

How	to	Onboard

Software	Engineers

The	essential	elements	to	effectively

onboard	developers

.. ..

19

There	 are	 2	 ways	 to	 get

great	 engineers	 at	 your

company.	 You	 can	 steal

them	 or	 you	 can	 make

them.”	 says	 Heddleston.

“In	 this	 day	 and	 age,

you’d	 probably	 better

have	 outlets	 for	 both”,

but	 you	 should	 at	 least

have	 “a	 sustainable

program	 of	 bringing	 on

junior	engineers”.

The	Benefits	on

Onboarding

“We	 spend	 a	 huge

amount	 of	 money

recruiting	 and	 sourcing

engineers”	 and	 then	 “we

pay	 them	 huge	 sums	 of

money	 to	 work”	 for	 us.

But	all	 too	often	when	 it

comes	 to	 onboarding

these	valuable	engineers,

the	 approach	 is	 just  —

“you’ll	figure	it	out,”	says

Heddleston.

The	 result	 is	 that	 “we’re

underutilizing	 people,

which	 is	 expensive	 for

companies,	 and	 people

are	 unhappy	 when	 they

aren’t	 fulfilling	 their

potential	 and	 that	 can

lead	 to	 attrition”.	 The

answer	 to	 this	 problem

for	 Heddleston	 is

onboarding.	 “The	 return

on	 investment	 is

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

incredible…	 you	 get	 so

much	 more	 out	 of

employees	 who	 are

happy	 and	 productive

and	 feel	 integrated	 into

the	team.”

Getting	Started	with

Onboarding

“The	 goal	 with

onboarding	is	what	I	call

reliable	 independence”,

says	 Heddleston.	 This	 is

when	“someone	is	able	to

reliably	 and

independently	 build

software	 on	 your	 team.

For	 someone	 who	 is

really	 senior,	 that	 might

take	 2	 weeks…	 for

someone	 really	 junior,

that	 might	 take	 more

like	6	months.”

However,	 according	 to

Heddleston,	 the	 time-

frame	 for	 reliable

independence	 “varies

hugely	 depending	 on	 the

size	 of	 the	 company	 and

the	 quality	 of	 their

internal	 tools.”	 A

common	 issue	 among

fast-growing	startups,	for

instance,	 is	 that

“everyone	has	to	come	in

and	 manually	 set	 up

everything…	 and	 that’s

just	 going	 to	 bottleneck

your	company.”	So	before

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

How	to	Onboard

Software	Engineers

The	essential	elements	to	effectively

onboard	developers

.. ..

20

where	 mistakes	 are	 made.

According	 to	 Heddleston,	 often

“the	 common	 first	 approach	 to

onboarding	 is	 to	 place	 new

employees	 with	 really	 senior

mentors,	 but	 mentoring	 is

actually	 really	 hard.	 It’s	 a	 lot

like	 teaching	 in	 the	 sense	 that

it’s	 very	 emotionally	 draining.”

What	happens	then	is	that	you

can	 “burn	 out	 all	 your	 senior

mentors”.	 So	 instead	 she

recommends	 that	 you	 “spread

out	 the	 load,	 and	 instead	 of

pairing	every	junior	who	comes

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

you	 even	 start	 to	 think	 about

an	 onboarding	 program,	 first

take	 stock	 of	 your	 tools.

Heddleston	 recommends	 that

new	 hires	 “shouldn’t	 spend	 a

lot	 of	 time	 having	 to	 do	 all

these	 installations	 that	you	do

once	and	that	have	no	learning

value”.

Once	 your	 tooling	 is	 sorted,

“the	 second	 thing	 is	 to	 put

together	 a	 Trello	 board	 and

come	 up	 with	 some	 goals	 of

what	you	want	to	see.	You	can

section	 it	 basically	 by	 the

rough	 seniority	 level	 of

someone	 coming	 in:	 senior,

mid-level,	 junior”.	 This	 helps

because	 “someone	 who	 is

junior	 is	 going	 to	 need	 a	 little

bit	 more	 hands-on	 attention

and	 someone	 who	 is	 senior	 is

probably	 going	 to	 want

freedom	 earlier.	 Then	 just	 set

up	 goals	 of	 what	 you	 want	 to

see	them	doing	in	the	first	day,

the	 first	 week,	 the	 first

month.”

So	 an	 example	 goal	 that

Heddleston	 suggests	 is	 “being

able	 to	 ship	 something	 on	 the

first	 day”.	 “This	 new	 engineer

comes	 onboard	 and	 in	 their

first	 day,	 they	 actually	 push

something	 to	production.	Even

if	 it’s	 just	a	 small	bug	 fix	or…

some	 config	 files	 that	 you

might	 need	 for	 something,	 it’s

a	 really	 nice	 thing	 to	 feel	 like

you	 can	 contribute	 on	 your

first	day.”

Beyond	 that,	 goals	 should	 fall

into	what	Heddleston	says	are

the	 “3	 major	 categories	 that

people	need	to	develop	in	order

to	 become	 reliably

independent.	 They’re	 each

about	a	third	of	what	someone

needs	 to	 know.	 We	 focus	 a	 lot

on	 technical	 knowledge…	 but

another	 third	 is	 company

structure,	 the	 internal	 tools

that	 you	 have,	 the	 way	 that

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

										There	are	2	ways	to	get	great
engineers	at	your	company.	You	can
steal	them,	or	you	can	make	them

..

Kate	Heddleston

you	 build,	 the	 way	 that	 your

code	 is	 set	 up.”	 The	 final	 third

“is	 personal	 development,

things	 like	 confidence,	 the

ability	 to	 research	 problems,

the	 ability	 to	 debug

independently	and	judgment.”

Your	program	should	also	 take

into	 account	 the	 fact	 that

“people	 are	 going	 to	 come	 in

stronger	 in	 different

categories,”	 says	 Heddleston.

“Everyone	 is	 going	 to	 come	 in

not	 knowing	 that	 much	 about

your	 internal	 company

structure,	 but	 some	 people

might	 have	 more	 confidence,

more	 debugging	 skills.	 Some

people	 might	 know	 a	 lot	 more

about	the	technologies	that	you

use”.	 So	 the	 goals	 should	 be

flexible	 and	 focus	 on	 “filling	 in

the	gaps	in	the	areas	that	they

aren’t	as	strong	in.”

Who	Should	Onboard

New	Hires?

Who	 is	 involved	 in	 onboarding

new	 hires	 is	 often	 an	 area

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

Kate	Heddleston,	an	independent

Product	Engineer,	provides	us	with

advice	about	onboarding	new

developers.	In	this	interview,	she

covers	the	benefits	of	onboarding,

its	essential	elements,	areas	to

focus	on	when	getting	started	and

common	mistakes	made.

21

..

in	 with	 a	 super	 senior

engineer,	 you	 pair	 them	 with

the	 last	 people	 who	 joined”.

Heddleston	 says	 this	 is	 a

much	 better	 approach

anyway,	 because	 “the	 best

person	 to	 teach	 something	 is

usually	 the	 last	 person	 who

did	it.”

What’s	 more,	 “really	 senior

people	are	not	necessarily	that

great	 at	 teaching	 junior

people.	They’ve	forgotten	what

it	was	 like	 to	 learn	 things	 for

the	 first	 time	 so	 it	 can	 be

really	painful.	It’s	nice	to	have

the	 intermediate	 people

turning	 around	 and	 teaching

because	they	grow	a	lot.”

Regardless	of	who	is	involved,

one	 pre-requisite	 that

Heddleston	 recommends	 is

“executive	 level	 sign-off”  —

“there’s	 nothing	 worse	 at	 a

company	 than	 fighting	 a

Director	 of	 Engineering”	 who

doesn’t	believe	in	the	goal.

Creating	a	Learning

Environment

When	setting	goals	you	should

understand	 that	 “one	 of	 the

tenets	 of	 expertise	 is	 the

ability	to	recognize	boundaries

and	 scope	 really	 well.

Whereas,	 one	 of	 the	 tenets	 of

being	 a	 beginner	 is	 that	 you

cannot	 recognize	 boundaries

and	 you	 are	 unable	 to	 scope

problems”.	 So	 Heddleston

cautions	 against	 making	 the

mistake	of	 “expecting	a	 junior

engineer	 to	 be	 really	 good	 at

scoping	 a	 feature.	 That’s	 one

of	 the	skills	 that	 they	have	to

learn.	 Whatever	 you	 give

them	to	do,	just	scope	it.	Then

let	them	go	play.	Give	them	a

feature	 that’s	 really	 well

defined,	 that	has	 a	 clear	 area

where	they’re	working	on	and

then	 let	 them	 go	 and	 fumble

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAA

around	with	it.”

“The	 final	 thing	 for	 junior

engineers,	 and	 beginners,	 in

general,	 is	 helping	 to	 bolster

confidence,”	 says	 Heddleston.

“People	 think	 that	 confidence

follows	 skills,	 but	 it’s	 usually

the	 other	 way	 around	 where

skills	 follow	 confidence.	 If

someone	 feels	 good	 about	 what

they’re	 doing,	 they’re	 more

likely	 to	 explore	 it	 and	 ask

questions	 and	 to	 believe	 that

they’re	 able	 to	 solve	 the

problem”.

Read	more	from	Kate	at:

www.kateheddleston.com

Creeker	Wisdom
"When	 I	 started	 in	 tech	 there	was	a	notion	 that	 the

way	to	be	great	was	to	lock	yourself	in	your	parent's

garage	until	 you	emerged	with	 a	 unicorn	 –	 the	 one

perfect	thing	that	the	world	really	needed,	but	hadn't

yet	realized	was	even	a	possibility.	That	worked	for	a

few	people	but,	 by	 in	 large,	money	and	 talent	were

more	 often	 squandered	 than	 transformed	 by

following	this	course.

It	 took	me	a	long	time	to	come	around	to	the	notion

that	 the	 method	 for	 developing	 life-altering	 tools

might	have	at	 least	as	much	science	as	art	 in	 it.	To

be	 sure,	 there	 is	 plenty	 of	 that	 ineffable	 stuff	 that

makes	art	and	innovation,	in	building	great	products,

but	 the	 pure	 light	 of	 inspiration	 is	 no	 substitute	 for

being	 methodical	 about	 your	 process	 and	 open	 to

the	reality	depicted	in	your	results."

-	David	Miller,	VP	Product	at	Fog	Creek

https://kateheddleston.com/

22

So	 once	 you’ve	 settled

on	 what	 exactly	 it	 is

that	 you’re	 looking	 for,

you	 need	 to	 consider

how	 you’re	 going	 to

find	that	person.	Evans

suggests	 that	 if	 that’s

finding	 a	 developer	 in

the	 local	 area,	 then

“the	first	thing	is	to	get

involved	 in	 your	 local

community.	 That

means	 start	 attending

your	 local	 developer

groups	 on	 a	 regular

basis.	Go	5	or	6	months

to	 build	 your

relationships	 before

you	 start	 doing	 any

real	 recruiting.	 Even

then,	 once	 you	 start,

don’t	 just	 walk	 in	 and

say	 ‘I’m	 here,	 I’m

collecting	 Resumes’,

but	 be	 the	 sponsor  —

buy	 the	 pizza	 and	 the

beer…”	 It’s	 important

to	 get	 this	 right,

AAAAAAAAAAAAAAA

A

..

To	 hire	 the	 best

developers,	 you	 first

have	 to	 know	 exactly

what	you’re	looking	for.

For	 me,	 says	 Evans,

“the	 number	 one	 thing

that	 I	 look	 for	 is

competency.	 If	 you’re

not	 competent	 then

you’re	 going	 to	 be	 a

hindrance	to	the	team.”

Then	next	is	culture	fit.

“These	 days,	 you	 have

to	be	very	careful	when

you	 say	 cultural	 fit

because	everybody	says

you’re	 only	 looking	 for

‘white	 guys	 that

graduated	 from	 your

college’.”	 But	 Evans

explains	 that	 this	 isn’t

what	 he	 means,

“cultural	 fit	 does	 not

mean	that	you	look	like

me,	 it	 does	 not	 mean

that	you	think	like	me.

What	 cultural	 fit

AAAAAAAAAAAAAAA

A

Cal	Evans	has	been	a	developer

for	more	than	35	years.	A	well-

known	PHP	community	leader,

he's	experienced	in	building	and

managing	development	teams

and	is	the	author	of	‘Culture	of

Respect’.	We	interviewed	him

about	finding,	hiring	and

retaining	developers.

means	is	that	I’ve	got	a

team	 that	 is	 currently

working	 together	 and

you’ve	got	to	be	able	to

play	 a	 part	 on	 that

team.”	 This	 is

paramount	 for	 Evans

because	 as	 he	 sees	 it,

“building	 that	 team

culture	 is	 so

important”	 as	 is

“keeping	 the	 team

cohesion”.

“I’ve	 seen	 great	 teams

make	 a	 bad	 hiring

decision	 and	 totally

destroy	 the	 culture	 of

the	 team	 and	 the

momentum	 of	 the

team.	 Just	 because

they	 got	 one	 person

who	dragged	the	whole

team	down.”

A	Community

Approach	to	Hiring

How	to	Find,	Hire,	and	Retain

the	Best	Developers

Cal	Evans

									Understand	that

they	have	lives,	and	the

main	point	of	their	lives

is	not	to	build	you	the

next	‘Uber	for	Penguins’

23

..

Honesty	and	Salary

Negotiations

“The	 final	 thing,”	 Evans	 says

that	 he	 looks	 for,	 “once	 I	 have

determined	 competency,	 once	 I

know	 it’s	 a	 good	 cultural	 fit,	 is

‘can	 I	 afford	 them?’”	 However,

unlike	 in	 a	 lot	 of	 companies

when	 it	 comes	 to	 salary

discussions,	 Evans	 is	 clear

about	 one	 thing  —  “I	 do	 not

negotiate	 salaries.	 I	 ask	 the

person	 ‘what	 do	 you	 need?’	 I

expect	 that	person	 to	be	honest

with	me	and	tell	me	the	number

they	need.”

Then	 regardless	 of	 what	 that

number	 is,	 “if	 it	 fits	 within	 my

budget	 and	 it’s	 a	 reasonable

price…	 then	 I	 say	 okay.	 I	 don’t

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

everybody	 is	 out	 of	 questions”.

He	 does	 this	 regardless	 of	 the

level	 he’s	 hiring	 for —  “I	 don’t

care	if	you’re	Junior,	Senior,	an

Architect	 or	 whatever,	 you’re

going	to	get	to	ask	any	question

you	want	of	this	person,	as	long

as	it’s	a	legal	question”.

Another	 key	 aspect	 of	 this

approach	 is	 that	 as	 the	 team

manager,	 he	 doesn’t	 ask	 any	 of

the	 questions.	 “My	 job	 is	 to	 sit

back	 and	 see	 how	 the	 team

interacts	 with	 this	 person	 and

how	 this	 person	 interacts	 with

the	 team.	 If	 I	 see	 a	 lot	 of

friction,	I’m	thinking	this	might

not	be	a	good	fit.”	What’s	more,

everyone	has	to	agree	on	who	to

hire.	 “It	has	 to	be	a	unanimous

vote.	 I’ve	 actually	 had	 to	 walk

away	from	candidates	because	I

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

						If	you've	already	got

developers,	they're	talking	to

their	buddies	and	we	know

how	much	you're	paying

because	 “your	 local	 community

is	 where	 you’re	 going	 to	 find

your	best	resources.”

Writing	Great	Job	Ads

When	 it	 comes	 to	 writing	 a	 job

ad,	 Evans	 stresses	 the	 need	 to

put	 yourself	 in	 the	 developer’s

position.	 When	 a	 developer	 is

looking	 for	 a	 job,	 what	 they

want	to	know	is	“‘can	I	afford	to

take	 the	 job?	am	 I	 qualified	 for

the	 job?	how	much	does	 the	 job

pay?’	That’s	the	important	stuff.

If	you	nail	those,	then	you	have

a	 good	 chance	 of	 finding	 the

developer	 that	 you’re	 actually

looking	 for.”	 So,	 “number	 one,

and	 I	 cannot	 stress	 this

enough”,	 says	 Evans,	 “is	 put	 a

salary	or	salary	range	on	the	job

ad.	 You’re	 not	 limiting

yourself…	 you’re	 not	 giving

away	 any	 secrets	 because	 I

guarantee	that	if	you’ve	already

got	 developers,	 they’re	 talking

to	 their	 buddies	 and	 we	 know

how	much	you’re	paying.”	Then,

it’s	 equally	 important	 to	 only

put	 the	 skills	 that	 you	 really

need	 on	 the	 ad.	 The	 tendency

for	 some	 is	 to	 list	 everything

they	 can	 think	 of,	 but	 if	 Evans

sees	that	then	“that’s	a	red	flag

immediately.	What	it	tells	me	is

that	you	don’t	understand	what

you	 want,	 so	 you’re	 just

throwing	everything	out	there”.

Hiring	the	Right

Developers

Once	 you’ve	 got	 some

applications	 for	 a	 position

coming	 in,	 then	 you’re	 going	 to

want	 to	 make	 sure	 they’re	 a

good	 fit.	 Evans	 explains	 the

approach	he	takes	to	make	sure

the	 team	 can	 work	 well	 with	 a

candidate.	“I	get	the	entire	team

that	 the	 person’s	 going	 to	 be

working	with	in	one	room	and	I

let	the	team	ask	questions	until

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

had	 one	 person	 say	 ‘I	 don’t

think	 this	person	 is	going	 to	 fit

well	 on	 my	 team’,	 and	 so	 we

said	 ‘I’m	 sorry	 it’s	 not	 going	 to

work’,	 because	 the	 team	 is	 the

one	that’s	going	to	have	to	work

with	 them.	 I’m	 just	 going	 to

have	to	manage	them,	that’s	the

easy	part.	The	team	has	to	work

with	them	on	a	day	to	day	basis.

If	 that	 team	 is	 not	 sold	 on	 the

fact	 that	 this	 person	 is	 the

person	 that	 they	 want	 on	 their

team,	I’d	rather	just	walk	away

and	find	another	candidate.”

come	back	with	a	 counter	offer.

I	 don’t	 negotiate	 this	 at	 all

because	 my	 feeling	 is…	 if

they’re	 being	 honest	 with	 me

then	 they’re	 going	 to	 tell	 me

what	 they	 need	 to	 be	 happy

with	 this.	 I	 don’t	 mind	 side

projects,	but	I	don’t	want	people

to	 have	 to	 do	 side	 projects	 to

make	 ends	 meet.	 Quite

honestly,	 if	 they’re	 not	 being

honest	 with	 me	 on	 their	 salary

needs,	I’m	probably	not	going	to

want	them	on	my	team	to	begin

with	 because	 they’re	 not	 being

honest	with	me,	period.”

24

Competing	for	Top	Talent

“For	most	 companies	 these	days,	 their	 in-house

development	 team	 is	 actually	 what	 drives	 the

company,”	 says	 Evans.	 They’re	 the	 ones	 that

“build	 the	 products	 that	 the	 company	 sells,	 or

makes	 it	 possible	 for	 the	 companies	 to	 sell.	 So,

while	 I’m	 never	 an	 advocate	 for	 setting

developers	up	on	a	pedestal	and	saying	we	need

to	treat	them	like	Demigods,	I	do	think	you	have

to	 respect	 the	 fact	 that	 you	 have	 to	 treat	 them

differently.	 You	 cannot	 just	 say,	 ‘we	 have	 a

cookie	 cutter,	 this	 is	 how	 we	 treat	 people’,

Developers	have	different	needs,”	Evans	says.	“If

I	start	a	job	and	they	hand	me	a	laptop	that	has

been	 used	 by	 three	 other	 people	 and	 I	 have	 to

figure	out	how	to	make	things	work,	then	that’s

a	 smell	 test	 that	 doesn’t	 pass.	 Companies	 have

to	 understand	 that	 you’ve	 got	 to	 invest	 in	 good

tools	for	developers.”

But	 how	 can	 you	 compete	 for	 top	 talent	 when

Google	 and	 Facebook	 are	 offering	 top	 salaries

with	 great	 perks?	 Evans	 suggests	 that	 you

instead	 compete	 on	 respect.	 “I	 understand	 the

mentality	 of	 free	 lunches	 and	 dry	 cleaning	 and

all	of	this.	Those	exist	so	the	company	can	keep

the	 developer’s	 butt	 in	 their	 seat	 longer,	 and

they	exist	for	no	other	reason.	It’s	just	a	way	to

keep	 that	 developer	 on	 campus,	 focused	 on	 the

job,	for	as	long	as	possible.”	Whereas,	“if	a	small

company	builds	a	culture	of	respect,	where	they

respect	 the	 developer,	 they	 understand	 that

their	 job	 is	a	portion	of	their	 life	and	that	their

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

A

									I	don't	mind	side

projects,	but	I	don't

want	people	to	have

to	do	side	projects	to

make	ends	meet

..

job	 is	not	 their	whole	 life,	 then	you	 can	attract

better	developers	than	companies	that	have	the

free	lunches,	dry	cleaning,	etc.”

Retaining	the	Best	Developers

The	 best	 way	 that	 you	 can	 show	 developers

respect	 is	 to	 respect	 their	 time,	 says	 Evans.	 “I

practice	 what’s	 called	 Servant	 Leadership.	 It

was	 not	 unusual	 for	 me,	 when	 I	 was	 running

teams,	 to	 first	 thing	 in	 the	morning,	brew	up	a

huge	pot	of	coffee	and	walk	around	to	each	of	my

developers	 around	 9am	 and	 refresh	 their

coffee…	this	was	just	my	way	of	saying	my	job	is

to	hire	good	people	and	get	out	of	the	way	and	to

make	 sure	 they	have	everything	 they	need.	My

job	 is	 to	serve	them	and	also	be	what	I	call	 the

‘poop	shield’.	Any	poop	that	comes	in	from	above,

my	 job	 is	 to	 keep	 it	 off	 my	 team.	 If	 a	 manager

needs	a	meeting	with	somebody	on	my	team,	I’ll

go.	I	will	sit	in	that	meeting,”	explains	Evans.

Ultimately,	 Evans	 says,	 you	 just	 need	 to	 “treat

developers	 with	 respect,	 and	 understand	 that

they	have	lives,	and	the	main	point	of	their	lives

is	not	to	build	you	the	next	 ‘Uber	for	Penguins’.

You	 don’t	 have	 to	 put	 them	 on	 a	 pedestal,	 but

they	 aren’t	 galley	 slaves	 either.	 You	 hire	 good

people,	 you	 treat	 them	 with	 respect,	 you	 give

them	 the	 tools	 that	 they	 need	 and	 let	 them	 do

their	 job.	 That	 is	 the	 secret	 to	 a	 happy,

productive,	and	awesome	development	team.”

Read	more	from	Cal	at:	blog.calevans.com

https://blog.calevans.com/

25

										Get	at	the	heart	of,	not	necessarily
what	somebody	knows,	but	what	they're
capable	of

They’re	 not	 entirely	 a	 closed

environment,	 and	 like	 any

ecosystem	 anytime	 you

introduce	anything	new	to	that

realm	 there’s	 going	 to	 be

changes…	 Any	 time	 you	 hire

somebody,	 you’re	 changing

that	 ecosystem,”	 says	 Miller.

“A	 lot	of	 teams	and	companies

don’t	 do	 a	 really	 great	 job	 of

understanding	that”.

As	a	result,	one	mistake	all	too

many	 of	 us	 make	 according	 to

Miller,	 is	 just	“hiring	 from	our

friend	 networks.	 The	 friend

network	 is	 such	 an	 important

part	of	how	we	get	 jobs,	but	 it

also	 tends	 to	 reinforce	 our

monocultures.	 We	 tend	 to	 be

friends	 with	 people	 who	 are

mostly	like	us,	and	so	those	are

the	 people	 that	 we’re	 going	 to

be	recommending,	and	so	those

are	 the	 ones	 that	 get	 hired.”

But,	 “it’s	 important	 to	 have

some	 diversity…	 and	 not	 just

the	 diversity	 we	 talk	 about	 in

terms	of	gender	or	ethnicity	or

race,	but	age,	 class,	 looking	at

people’s	 technical

backgrounds,	do	they	come	out

of	 CS	 programs	 versus	 being

self-taught	 or	 a	 boot	 camp?

Industry	 backgrounds…	 Were

they	 at	 startups	 versus	 large

enterprise	 companies,	 or

somewhere	 in	 between?	 All

those	 pieces	 of	 diversity	 are

going	 to	 be	 influential	 and

improve	 the	 health	 of	 the

ecosystem	of	your	team.”

It’s	 important	to	consider	each

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

We	typically	don't	get	trained	how	to

interview,	and	we've	all	experienced

the	haphazard	approaches	of	those

new	to	it — poor	organization,	repeated

questions,	fizz-buzz…	In	this	interview,

Kerri	Miller,	Application	Engineer	at

GitHub	and	former	Lead	Software

Engineer	at	LivingSocial,	tells	us	how

to	run	interview	days.	She	covers	the

types	of	questions	to	ask,	how	else	we

can	evaluate	technical	candidates	and

what	to	do	after	the	interview.

team	 in	 this	 wider	 context.	 As

Miller	explains,	“in	soccer,	they

say,	 ‘run	 to	where	 the	ball	will

be,	 rather	 than	 where	 the	 ball

is’”	and	we	all	need	to	hire	like

that	 as	 well.	 You	 can	 start	 by

having	 “early	 conversations

about	who	you	need	to	hire,	and

what	you	want	to	look	for,	what

sort	 of	 energy	 and	 person	 do

you	 want	 to	 add	 to	 your	 team,

to	 influence	 it	 into	 a	 good

direction	 and	 then	 go	 to	 those

people,	find	them,	whether	it	be

through	 meetups,	 or	 user-

groups…	 and	 not	 just	 your

immediate	friend	network.”

Structuring	the	Interview

When	 it	 comes	 to	 interviewing

technical	 candidates,	 Miller

suggests	 that	 you	 start	 by

“splitting	up	 the	 interview	 into

topics”	 and	 then	 working	 out

“the	 questions	 you’re	 going	 to

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

Tips	on	running	interviews	and	evaluating	technical	candidates

Kerri	Miller

We're	Bad	at	Interviewing	Developers	(and	how	to	fix	it)

"I

A

A

like	 to	 think	 of	 my

software	 teams	 as

little	 ecosystems,	 or

tiny	 arcologies	 that

exist	in	a	bottle.

..

ask”	about	that	topic.	However,

it’s	important	that	“you’re	going

to	 consistently	 ask	 these	 to	 all

of	your	candidates”.	It	may	feel

“a	little	bit	like	reading	a	script,

but	 it	 really	 lets	 you	 compare

apples	 to	 apples	 as	 much	 as

possible,”	says	Miller.

Another	 thing	she	recommends

is	 that,	 if	 there	 are	 multiple

people	 involved	 in	 interviewing

a	candidate	and	lets	say	“you’re

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

26

hiring	 for	 a	 front-end	 developer,	 you	 should	 have	 one	 person	 ask	 about

JavaScript.	 You	 should	 have	 one	 person	 ask	 about	 browser	 interaction,	 or

working	with	designers.	Just	split	up	the	interview	so	that	you’re	not	asking

the	same	questions	over	and	over	again”.	This	helps	because	it	means	you’re

able	 “to	 get	 really	 solid	 signal	 on	 a	 person’s	 skill	 sets,	 what	 they’re

comfortable	with,	and	what	their	concerns	are,”	explains	Miller.

Good	Interview	Questions

So	 what	 are	 good	 types	 of	 questions	 that	 we	 should	 be	 asking?	 Miller

suggests	that	we	“focus	on	questions	about	decisions	that	they’ve	made,	what

choices	 have	 they	 made,	 and	 what	 choices	 would	 they	 make	 again	 in	 the

future?”	You	want	to	understand	whether	“they’re	reflective	about	mistakes

that	they’ve	made.	Is	a	candidate	looking	for	opportunities	to	 improve,	and

how	do	they	actually	go	about	it?”

Then	 you	 also	 want	 to	 get	 a	 feel	 for	 whether	 “they	 make	 plans	 for

themselves,	like	how	they	would	improve	a	certain	skill	set,	whether	that	be

a	 technical	 skill	 set	 or	 a	 more	 soft-skill	 set,	 for	 example,	 management,	 or

project	 shepherding	 for	 example.	 Those	 are	 the	 kinds	 of	 questions	 that	 I

think	really	get	you	at	the	heart	of,	not	necessarily	what	somebody	knows,

but	what	they’re	capable	of.”

“I’m	not	a	big	 fan	of	whiteboarding,”	says	Miller.	 “I	 think	that’s	something

that	we	just	automatically	do,	and	we	don’t	think	about	what	questions	we

are	trying	to	answer	by	asking	a	candidate	to	solve	a	problem”.	Instead,	she

recommends	 “pairing	 on	 projects,	 like	 actually	 working	 with	 somebody.	 It

doesn’t	have	 to	be	a	 formal	or	 traditional	pair-programming	situation	with

AAA

AAAAAAAAAAAAAAA

..

									Communication	is

such	a	big	part	of	what
we	do	in	this	job,	testing
for	that	essential	skill

can	be	really	useful

27

work,	but	write	down	what	your

impressions	 were.	 What	 were

the	 pros	 and	 cons,	 the	 bullet

points,	and	find	something	good

about	 the	 candidate	 and

something	not-so-good	about	the

candidate,	 something	 that	 you

wish	 they	 did	 have.	 Don’t	 pass

this	 feedback	back	to	 the	group

but	 pass	 it	 back	 to	 a	 central

person,	like	the	hiring	manager,

so	 you’re	 not	 coloring	 the

impressions	of	other	people.”

For	 Miller,	 this	 immediate	 but

individual	 feedback	 is

important	 to	 capture	 so	 that

“when	 you	 get	 back	 into	 that

room	 with	 everybody	 else,

whether	 it’s	 virtual	 or	 real,	 to

really	 discuss	 your	 opinions…

you	 can’t	 be	 swayed	 by	 the

impressions	 of	 somebody	 else.

For	 example,	 if	 you	 were

supposed	 to	 interview	 them

about	 JavaScript,	 and	 the

senior	 developer,	 who’s	 got

twenty	 years	 of	 experience	 in

JavaScript,	 just	 really	 did	 not

like	 that	 person,	 how	 would

that	 color	 your	 opinion	 if	 you

had	to	give	it	in	that	moment?	If

you	 wrote	 it	 down	 previously

then	 you’ve	 captured	 that

honestly	and	you	can	really	give

honest	feedback.”

Measuring	Your	Hiring

Process

When	 it	 comes	 to	 measuring

and	 improving	 your	 hiring

process,	 Miller	 says	 that	 “it’s

really	 hard	 to	 look	 at	 who	 you

hire	 and	 decide	 whether	 you

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

one	 computer	 and	 two	 people,

talking	 through	 the	 technical

choices	 that	 they	 would	 be

making	as	they	programmed	on

something”.

Beyond	Whiteboarding

Miller	 explains	 that	 “at

LivingSocial,	 we	 do	 a	 code

challenge…	 but	 as	 a	 launching

pad	to	having	a	discussion	with

a	 candidate.”	 Then	 as	 they’re

undertaking	 that	 exercise	 you

can	ask	questions,	like	“why	did

you	choose	this	technique?	How

would	you	do	 it	better?	What	 if

we	 sat	 down	 and	 refactored?

That’s	 one	 really	 good	 way	 to

get	to	the	heart	of	why	they	are

making	 the	 decisions	 they’ve

made.”

Another	 approach	 Miller

suggests	 is	 “asking	 the

employee	 to	 explain	 something

to	 me”.	 This	 is	 great	 for

understanding	 “how	 well	 they

communicate	 about	 something

that	they’re	a	local	expert	in	but

their	 intended	 audience	 is	 not.

Could	they	then	go	off	and	learn

a	new	 framework,	 or	 go	have	 a

meeting	 with,	 perhaps,	 a

stakeholder,	 or	 a	 client,	 and

come	back	and	explain	what	the

actual	requirements	are	to	me?”

After	 all,	 Miller	 says	 that

“communication	 is	 such	 a	 big

part	 of	 what	 we	 do	 in	 this	 job,

testing	for	that	essential	skill	in

a	 really	 clear	 and	 explicit	 way

can	be	really	useful	and	get	you

a	 really	 good	 signal	 about	 who

that	 candidate	 is	 and	 how

they’re	 going	 to	 fit	 into	 your

organization.”

After	the	Interview

“Once	 you’re	 done	 with	 your

little	 section	 of	 the	 interview,

you	should	immediately	go	back

to	your	desk	and	not	get	back	to

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

						Immediately	go	back	to	your

desk	and	not	get	back	to	work,

but	write	down	what	your

impressions	were

..

have	 a	 good	 or	 bad	 process”.

Instead,	she	recommends	taking

a	 “look	 at	 who	 you	 don’t	 hire.

You	can	look	at	that	in	terms	of

what	 were	 the	 false	 negatives?

Did	 we	 bounce	 this	 person	 out

of	 the	 process	 for	 a	 specific

reason	 and	 then	 it	 turns	 out

that	 that	 reason	 wasn’t	 good,

based	 on	 where	 they	 ended	 up

going	 to	 work?”	 For	 developers

in	particular,	“it’s	really	easy	to

LinkedIn	stalk	people,	and	peek

into	 their	 GitHub	 profiles…	 to

see	 what	 they’re	 doing	 a	 few

months	 later.	 So	 go	 back	 and

look	at	 the	 candidates	 that	 you

passed	over.”

Another	 aspect	 that	 Miller

thinks	 you	 should	 consider	 is

“understanding	 what	 your

pipeline	 of	 candidates	 consists

of.	 At	 each	 step,	 you	 have	 a

certain	 amount	 of	 leakage,

because	people	just	simply	don’t

make	 it	 through	 the	 process	 or

they	 abandon	 the	 process.	 How

many	 people	 are	 you	 losing	 at

each	step,	and	is	there	one	step

that	you’re	losing	a	lot	of	people

at?	 Maybe	 you	 need	 to	 refine

that	 step,	 remove	 it,	 or	move	 it

in	 the	 process.	 I	 think	 it’s	 also

important	to	 look	at	who	you’re

losing	 as	 well.	 Are	 you	 losing

junior	developers	at	a	particular

step?	 Are	 you	 losing	 more

diverse	 candidates?	 And	 then

understand,	 or	 question	 at

least,	your	process.”

Read	more	from	Kerri	at:

www.kerrizor.com

http://kerrizor.com/

28

Building	a	Culture	of	Learning	in	Development	Teams

..

Joe	Mastey
Joe	Mastey	is	a	developer	who

previously	led	internal	learning	at

Enova	where	he	built	out	their

internal	learning	program.	In	this

interview,	we	hear	what	worked,

what	didn't	and	how	you	too	can

kick-off	an	internal	learning	program

for	your	development	team.

really	 great	 engineers.

And	 we	 can	 also	 retain

really	 great	 engineers

too.”

Another	 benefit	 of	 a

learning	 culture	 is	 that

“it	 actually	 reduces

waste,”	 says	 Mastey.

“One	 of	 the	 things	 that

we’ve	 seen	 a	 lot	 of	 is	 if

you	 aren’t	 really	 great

with	 your	 tools,	 you’re

not	 leveraging	 them

completely.	 Because	 of

that,	 you’re	 spending

more	 time	 than	 you

need	 to.	 One	 of	 the

things	 that’s	 maybe

counter-intuitive	is	that

by	 spending	 this	 extra

time,	 we	 actually	 end

up	 saving	 time	 in	 the

long	run.”

And	 anyone	 who	 is

interested	 in

establishing	 a	 learning

program	 can	 do	 so.	 “I

have	 no	 teaching

b a c k g r o u n d

whatsoever,”	 confesses

Mastey,	 but	 “one	 of	 the

things	that	I	always	tell

AAAAAAAAAAAAAAA

A

The	 answer	 to	 this

problem	 is	 to	 establish

a	learning	culture.	“The

thing	 that	 interested

me	 the	 most	 was	 that

by	 creating	a	 culture	of

learning,	 we	 actually

increased	retention,	not

only	 of	 the	 younger

people	 but	 also	 of	 the

more	 experienced

engineers,”	 says

Mastey.	 “There’s	 this

thing	 where	 when

you’re	 at	 a	 technology

company	 for	 maybe	 a

couple	of	years,	right	at

the	 beginning	 you’re

learning	 new	 things.

It’s	 very	 exciting,	 you

get	 a	 new	 platform…

but,	 a	 couple	 of	 years

in,	 and	 you	 are

basically	 done	 learning

parts	of	it.	You	feel	like

you	 slow	 down	 in	 that

learning.	 This	 is	 the

part	 where	 a	 lot	 of

people	 end	up	dropping

off.	 By	 building	 a

culture	that	continually

moves	 forward	 and

rewards	 that	 kind	 of

learning,	we	can	attract

AAAAAAAAAAAAAAA

A

In	 a	 lot	 of	 companies,

people	 just	 learn	 on	 the

job.	 But	 Mastey	 says

that	 “when	people	 try	 to

learn	 on	 the	 job,	 they

really	 only	 learn	 a

narrow	 subset	 of	 all	 the

things	 that	 they	 need	 to

know	about	a	technology.

What	that	leaves	is	a	big

gap	 in	 their	skills	where

maybe	 they	 know	 a	 lot

about	 one	 particular

section	 of	 the	 platform,

but	then	they	miss	entire

other	sections.	That	ends

up	 being	 a	 hindrance.”

What’s	 more,	 people	 can

pick	 up	 bad	 habits	 and

practices	 from	 learning

this	 way	 too.	 After	 all,

not	all	of	the	code	in	our

codebases	 is	 good,	 but

people	see	 that	code	and

“pick	 up	 these	 terrible

patterns	 and	 so	 they

internalize	 the	 wrong

thing	instead	of	 learning

the	 right	 thing,”	 says

Mastey.

Benefits	of	a

Learning	Culture

						People	pick	up

these	terrible

patterns	and	so
they	internalize	the
wrong	thing

instead	of	learning
the	right	thing

29

really	 need	 to	 have	 everybody

on	board,”	explains	Mastey.

Activities	to	Try

To	get	 started	 “you	 really	want

to	 focus	 opportunistically	 on

places	where	you	can	have	a	lot

of	 impact	 for	 only	a	 little	 bit	 of

effort,”	 says	 Mastey.	 “Don’t	 try

upfront	 to	 change	 the	 world

right	 out	 of	 the	 gate,	 because

you	 don’t	 have	 enough	 buy-in

for	 that	 yet.”	 You	 should	 also

bear	 in	 mind	 that	 it’s	 an

iterative	 process,	 cautions

Mastey.	 “A	 lot	 of	 things	 don’t

work.	 That’s	 okay.	 Like	 that’s

part	 of	 the	 process…	 we	 don’t

know	 upfront	 what’s	 going	 to

work…	so	try	a	thousand	things

and	 monitor	 how	 they’re

working,	 but	 don’t	 be	 afraid	 to

throw	them	out.”

“Some	 of	 the	 really	 easy	 stuff”

to	 start	 with,	 suggests	 Mastey,

“is	 have	 a	 brown	 bag	 lunch.

Have	 a	 book	 club.	 Do	 code

review.	 Literally,	 you	 can	 have

two	 people	 on	 different	 teams,

just	 have	 those	 two	 people	 do

code	review	between	each	other.

Already,	 you’re	 starting	 to

create	 the	 links	 within	 the

organization	 that	 is	 going	 to

support	those	changes	later	on”.

Another	suggestion	is	to	“post	in

your	 company’s	 chat	 program

that	 you	 want	 to	 go	 to	 a	 meet-

up	and	see	if	some	other	people

will	 come	 with	 you,”	 says

Mastey.	 You	 want	 to	 think	 of

“things	 where	 you	 only	 need	 a

couple	 of	 people	 to	 buy-in.	 It

doesn’t	really	cost	you	anything,

but	you	can	come	back	and	say,

‘Okay.	 I	 now	 know	 about	 this

new	 JavaScript	 framework.	 I

now	know	about	this	tweak	that

I	didn’t	understand	before’”.

Then	once	it’s	working,	you	can

think	 of	 things	 that	 require	 a

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

..

little	 more	 time	 investment.

“Cross	training	is	one	of	the	big

ones	 that	 I	 love,”	 says	 Mastey.

For	 example,	 “your	 UI	 people

should	 understand	 the

database.	Your	database	people

should	 understand	 how	 testing

works”	 and	 through	 cross-

training	you	can	encourage	this

learning	 and	 reduce	 your	 bus

factor.

Something	that	worked	well	 for

Mastey	were	weekly	 tech	 talks.

“In	the	first	company	that	I	did

this	 at,	 we	 had	 an	 hour	 long

tech	talk	program,	where	it	was

four	 slots	 every	 single	 week.

Every	 week,	 we	 got	 four	 new

ideas	 into	 the	 organization”.	 Of

course,	 “that	 does	 take	 time,

and	 it	 does	 take	 preparation,

but	 when	 you	 can	 start	 to	 do

that,	 the	 impact	 on	 the

organization	 is	 really	 obvious

and	it’s	really	good”.

Next	Steps?	Just	go	do	it!

There	is	a	lot	that	you	can	read

on	 the	 subject.	 Mastey

recommends	 Dave	 Hoover’s

Apprenticeship	Patterns	book	in

particular,	but	warns	to	“not	get

stuck	 on	 reading	 and	 learning

everything	 beforehand,	 because

everyone	 else’s	 organization	 is

really	 different	 than	 yours.

Whatever	you	learn	you’re	going

to	 have	 to	 take	 with	 a	 grain	 of

salt	 anyway.	 The	 best	 thing	 to

do	is	really	just	get	in	and	start

getting	feedback	from	your	own

organization	and	from	your	own

stakeholders.	 Don’t	 think	 that

you’re	 going	 to	 perfect	 it	 by

reading.”

Read	more	from	Joe	at:

www.josephmastey.com

people	 is	 that	 when	 you’re

trying	to	build	this	part	of	your

culture,	you	don’t	need	to	have	a

teaching	degree.	You	don’t	need

that	 expertise.	 Really,	 if	 you’re

interested,	 you	 can	 figure	 it

out.”

Key	Phases

So	 there	 are	 three	 key	 stages

that	Mastey	outlines	to	create	a

learning	 culture.	 “The	 first

phase	 is	 really	 building	 up

credibility.	 In	 that	 phase,	 we

are	 trying	 to	 just	 find	 these

quick	 wins	 and	 things	 to	 help

people	prove	to	themselves	that

what	we	we're	doing	is	going	to

be	valuable	and	going	to	provide

value	to	the	business”.

You	 can	 progress	 to	 the	 second

stage	 once	 you’ve	 built

credibility	 and	 people	 are

starting	 to	 understand	 the

positive	 value	 a	 focus	 on

learning	 can	have.	Mastey	 says

that	 “in	 the	 second	 phase	 we

can	 start	 to	 expand	 outside	 of

the	couple	of	people	and	some	of

those	 quick	 wins.	 We	 can	 start

to	 invest	 time	 and	 things	 that

take	a	 little	bit	 longer	and	now

we’re	 involving	 entire	 teams	 of

people.	 We’re	 trying	 to	 build

links	 between	 teams.	 We	 can

actually	 invest	 a	 little	 bit	more

money	 because	 people	 have

started	 to	 understand	 what

we’re	going	 to	get	back	 for	 that

money.”

Then	 by	 the	 third	 stage,	 it’s

“essentially	 making	 that	 a

permanent	part	of	the	culture…

you	 can	 make	 it	 a	 part	 of

people’s	 job”.	 By	 this	 stage

people	 “just	 don’t	 even

remember	 that	 it	 was	 ever

something	 that	 they	 didn’t	 do.

At	 that	 part,	 you	 have	 the

ability	 to	 make	 really	 big

changes	 that	 are	 incredibly

helpful	 to	 the	 company	 but

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

http://josephmastey.com/

30

..

	 	 	 	 	 	 "I	get	really	excited	about
optimizing	performance	and
experiences.	I	get	frustrated	very
easily,	so	anytime	I	can	use
programming	to	take	away	my
frustration	is	a	golden	opportunity."

Richard	Schneeman,	Software	Engineer	at	Heroku

	 	 	 	 	 	 "I'm	happiest	when	I	know	what
I'm	doing	and	I	enter	this	zen	mode.	I
love	when	I'm	building	a	feature	that	I

already	know	how	to	build,	and	I	get
to	focus	on	getting	things	just	right,
and	paying	attention	to	the	details	of

the	code	rather	than	just	getting	the
feature	to	work."

Saron	Yitbarek,	Founder	at	CodeNewbie

	 	 	 	 	 	 "I	love	the	“eureka”	moment	when
I've	gotten	something	to	work,
particularly	when	the	solution	was	not
obvious	initially.	Removing	code	when

refactoring	is	always	satisfying.	I	also
love	reading	code	that	is	beautiful	and
concise."

Lindi	Emoungu,	Senior	Software	Engineer	at	Google
	 	 	 	 	 	 "The	kinds	of	problems	that	I
really	enjoy	coding-up	are	those
where	first,	I	have	a	clear
specification	of	the	problem,	and
second,	I	can	solve	the	problem	by

creating	subsystems	that	solve
simpler	problems	and	then	fortifying
the	heck	out	of	those	subsystems."

Eric	Lippert,	Software	Engineer	at	Facebook	and
author	of	‘Essential	C#’

						"When	my	language	and	tools	don't

get	in	my	way,	and	help	me	instead.
Also,	when	my	dependencies	have
good	documentation."

Steve	Klabnik,	Rust	Community	Team	Lead	at	Mozilla

						"I'm	at	my	happiest	when	I	get	to

make	the	code	itself	more	beautiful.	I
love	producing	APIs	and	code	that	other

programmers	will	be	happy	to	live	in.	I
could	refactor	all	day.	I	find	cleaning	up
messy	code	deeply	soothing."

Bob	Nystrom,	Software	Engineer	at	Google

						"I'm	happiest	when	I've	solved	a
problem	to	my	satisfaction.

Sometimes	the	people	asking	me	to
solve	the	problem	are	satisfied	too."

Chris	Hartjes,	QA	Engineer	at	Mozilla

						"I	like	making	code	beautiful.
Performance	matters	and	code	has	to	do

what	it's	supposed	to	do,	but	for	me,	the
fun	part	is	finding	the	most	elegant	way
to	solve	a	problem."

Dusty	Phillips,	Software	Engineer	at	Facebook

What	Makes	Developers	Happy?

We	asked	some	passionate	developers	when	they	are	at	their	happiest	whilst	coding

31

Technical	Leadership

Part	3

32

.. ..

frameworks,	 new

technologies	 and	 then

suddenly	 you’re	 having

to	 worry	 about	 who	 on

your	 team	 is	 currently	 a

bit	upset,	about	trying	to

negotiate	 an	 agreement

between	 two	 very

opinionated	 developers”

and	all	“while	you’re	still

trying	 to	 get	 something

delivered”.

Anyone	 who	 has	 been	 in

any	 sort	 of	 leadership

position	 will	 know	 that

“you	 won’t	 have	 enough

time	 to	 deal	 with	 all	 of

the	things	that	you’d	like

to	 do,	 and	 this	 is	 true

when	you’re	being	pulled

in	 quite	 a	 few	 different

directions”.	 And	 so	 of

paramount	importance	is

the	 ability	 to	 “really

prioritize	time	to	its	best

use	 possible”,	 Kua	 says.

As	 you	 develop	 in	 the

role,	 you	 also	 have	 to

broaden	your	perspective

and	 take	 a	 more	 holistic

view.	 “So	 thinking	 about

longer-term	 plans,	 are

there	 any	 bigger,

nagging	 architecture

issues	 that	 need	 to	 be

dealt	 with”,	 have	 we

made	 “the	 right

technology	 choices	 or

should	we	be	looking	at	a

new	 technology	and	 if	 so

how	 do	 you	 kind	 of

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

Pat	 Kua	 has	 been

working	 as	 a	 Technical

Leader	 for	 eight	 years,

working	 alongside	 Agile

development	 teams.

“One	 of	 the	 interesting

things	I’ve	observed	is	a

gap	 in	 leadership	 skills

for	 technical	 people”,

Kua	 says.	 Part	 of	 the

cause	of	this	is	a	lack	of

learning	 resources	 on

the	 subject.	 “There	 are

lots	 of	 books	 that	 teach

you	 how	 to	 be	 a	 great

developer,	 that	 teach

you	 how	 to	 learn

refactoring	skills,	 things

about	 good	 clean	 code,

how	 to	 unit	 test	 stuff”,

but	there’s	not	much	out

there	 about	 becoming	 a

Tech	Lead.

That’s	 not	 the	 only

problem	new	Tech	Leads

have	 to	 contend	 with.

It’s	 also	 a	 lonely	 role —

“you’re	 kind	 of	 by

yourself”,	 Kua	 says.

“There’s	 not	 a	 lot	 of

support.	 You’re	 kind	 of

thrown	 into	 this	 world

between	business	people

and	 this	 frustration	 of

wanting	 to	 write	 code

and	there’s	nobody	there

to	 help	 you”.	 You’re

taken	 away	 from	 the

familiar,	 “where	 you’re

surrounded	 by

compilers,	 test

AAAAAAAAAAAAAAA

A

From	Developer	to

Tech	Lead 

Making	the	Leap	into	Technical

Management

33

.. ..

frameworks,	 new

technologies	 and	 then

suddenly	 you’re	 having

to	 worry	 about	 who	 on

your	 team	 is	 currently	 a

bit	upset,	about	trying	to

negotiate	 an	 agreement

between	 two	 very

opinionated	 developers”

and	all	“while	you’re	still

trying	 to	 get	 something

delivered”.

Anyone	 who	 has	 been	 in

any	 sort	 of	 leadership

position	 will	 know	 that

“you	 won’t	 have	 enough

time	 to	 deal	 with	 all	 of

the	things	that	you’d	like

to	 do,	 and	 this	 is	 true

when	you’re	being	pulled

in	 quite	 a	 few	 different

directions”.	 And	 so	 of

paramount	importance	is

the	 ability	 to	 “really

prioritize	time	to	its	best

use	 possible”,	 Kua	 says.

As	 you	 develop	 in	 the

role,	 you	 also	 have	 to

broaden	your	perspective

and	 take	 a	 more	 holistic

view.	 “So	 thinking	 about

longer-term	 plans,	 are

there	 any	 bigger,

nagging	 architecture

issues	 that	 need	 to	 be

dealt	 with”,	 have	 we

made	 “the	 right

technology	 choices	 or

should	we	be	looking	at	a

new	 technology	and	 if	 so

how	 do	 you	 kind	 of

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

Pat	 Kua	 has	 been

working	 as	 a	 Technical

Leader	 for	 eight	 years,

working	 alongside	 Agile

development	 teams.

“One	 of	 the	 interesting

things	I’ve	observed	is	a

gap	 in	 leadership	 skills

for	 technical	 people”,

Kua	 says.	 Part	 of	 the

cause	of	this	is	a	lack	of

learning	 resources	 on

the	 subject.	 “There	 are

lots	 of	 books	 that	 teach

you	 how	 to	 be	 a	 great

developer,	 that	 teach

you	 how	 to	 learn

refactoring	skills,	 things

about	 good	 clean	 code,

how	 to	 unit	 test	 stuff”,

but	there’s	not	much	out

there	 about	 becoming	 a

Tech	Lead.

That’s	 not	 the	 only

problem	new	Tech	Leads

have	 to	 contend	 with.

It’s	 also	 a	 lonely	 role —

“you’re	 kind	 of	 by

yourself”,	 Kua	 says.

“There’s	 not	 a	 lot	 of

support.	 You’re	 kind	 of

thrown	 into	 this	 world

between	business	people

and	 this	 frustration	 of

wanting	 to	 write	 code

and	there’s	nobody	there

to	 help	 you”.	 You’re

taken	 away	 from	 the

familiar,	 “where	 you’re

surrounded	 by

compilers,	 test

AAAAAAAAAAAAAAA

A

From	Developer	to

Tech	Lead 

Making	the	Leap	into	Technical

Management

34

..

										There	will	always	be	some	tense
situation	at	some	point	in	a	project…	it's
kind	of	natural,	people	are	unpredictable

Pat	Kua

Pat	Kua	knows	what	it	is	to	be	a	great	Tech

Lead.	Not	only	has	he	worked	with

hundreds	of	clients,	helping	to	solve	their

engineering	problems,	as	part	of	his	role	as

Principal	Consultant	and	Tech	Lead	for

Thoughtworks.	But	he's	also	learned	a	lot

from	his	conversations	with	other

experienced	Technical	Leaders.	Kua	spoke

to	more	than	35	whilst	researching	his

book,	‘Talking	with	Tech	Leads’.

reading	 code,	 being	 able	 to

work	 with	 people	 on	 code”	 to

help	 ensure	 that	 they	 really

“understand	 what	 the	 key

problems	 are.	 To	 understand

the	 language	 that	 developers

use,	so	that	they	can	talk	at	the

same	 sort	 of	 level,	 and	 also

know	 when	 people	 are	 maybe

making	 a	 bigger	 deal	 out	 of

something”.

“I	 think	 30%	 is	 a	 good

minimum",	says	Kua,	about	the

amount	 of	 time	 you	 should

actually	 still	 spend	 coding.

Whilst	 at	 times	 this	 might	 not

be	 possible	 due	 to	 more

pressing	 concerns,	 “it’s

important	 that	 the	 Tech	 Lead

thinks	 about	 spending	 some

time	 in	 the	 code,	 so	 you’re

getting	 the	 respect”	 and

maintain	 “a	 true	 awareness	 of

what’s	actually	going	on.”

Dealing	With

Interruptions

“Tech	 Leads	 will	 always	 be

interrupted”,	 says	 Kua.	 He

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

recommends	 a	 few	 tactics	 to

help	cope	with	this.	“Some	Tech

Leads	 simply	block	out	 time	 in

their	 calendar	so	 that	 they	can

actually	 spend	 time	 without

interruptions.	 I	 think	 that’s

easier	 in	 some	 environments

than	 others.	 In	 a	 sort	 of	 more

Agile	 environment,	 where	 the

team	is	all	co-located,	there	are

lots	 of	 things	 going	 on,	 even

blocking	 out	 your	 calendar

doesn’t	really	solve	a	lot	of	that

problem	 because	 people	 will

just	interrupt	you”.

introduce	that”.

A	 common	 theme	 in	 Kua’s

writing	 on	 the	 subject	 of

Technical	Leadership	is	that	of

the	 paradoxes	 the	 role	 throws

up.	As	Tech	Leads	“we	have	to

be	 really	 focused	on	delivering

something.	 At	 the	 same	 time,

we	kind	of	want	the	team	to	be

learning	new	technologies,	to…

spend	time	on	training,	to	go	to

conferences”	 and	 “focus	 on

removing	 problems	 and	 the

technical	 challenges	 that	 we

have	 in	 our	 environment.	But,

it’s…	hard	to	balance	out	those

two	 kinds	 of	 aspects”,	 Kua

says.	 “I	 don’t	 think	 you	 can

ever	 really	 say	 that’s	 it’s	 a

perfectly	unbalanced	 equation,

it	 will	 wax	 and	 wane

depending	 on	 what	 things	 are

going	on.	But	it’s	a	key	skill	for

a	 Tech	 Lead	 to	 sort	 of	 accept

the	 paradox	 and	 embrace	 the

paradox	 and	 to	 find	 a	 way	 to

do	both	at	the	same	time”.

Should	Tech	Leads

Code?

“When	 I	 talk	 to	 developers

going	 into	 the	 Tech	 Lead	 role,

the	 biggest	 thing	 is	 ‘do	 I	 still

get	 to	 code?’,”	 says	 Kua.	 “My

answer	 is,	 to	 be	 effective,	 I

think	 you	 do	 need	 to	 code”.

“Developers	 really	 respect

technical	 ability.	 And	 it’s	 very

difficult	for	people	who	want	to

follow	 a	 leader”,	 who	 “want	 to

respect	 their	 leadership

decisions	 if	 they	 don’t	 have

that	 respect	 for	 their	 ability”.

This	probably	 stems	 from	 “the

classic	 ivory	 tower	 architect,

that	 makes	 decisions	 far

removed	 from	 the	 context	 of

the	 problems	 that	 we

experience	 on	 a	 day-to-day

basis”.	 So	 that’s	 why	 “Tech

Leads,	to	be	effective,	still	need

to	 code.	 Or	 at	 least,	 be	 at	 the

coal	 face,	 where	 they’re

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

35

just	 sitting	 back	 and	 trusting

the	 team	 to	 do	 the	 things	 that

need	 to	 be	 done	 makes	 sense”.

But	it	can	take	“time	to	develop

an	 awareness	 of	 when	 to	 use

which	mode”.

Skills	to	Develop

Kua	says	that	the	people	side	of

the	 role,	 is	 “one	 of	 the	 hardest

things	 for	a	Tech	Lead	 to	 learn

as	 it’s	 a	 skill	 that	 you	 don’t

necessarily	practice	when	being

a	 developer”.	 Another	 key	 part

of	 this	 is	 the	 need	 for	 the	 tech

Lead	 to	 act	 as	 a	 linchpin

between	 engineering	 and	 the

business.	 “A	 lot	 of	 the	 skills

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

..

						Tech	Leads,	to	be
effective,	still	need	to	code
or	at	least	be	at	the	coal	face

people	to	understand	some	good

skills”.

He	 also	 recommends	 the	 books

‘Crucial	 Confrontations’	 and

‘Crucial	 Conversations.’

“They're	 useful	 because	 there

will	 always	 be	 some	 tense

situation	 at	 some	 point	 in	 a

project” —  “it’s	 kind	 of	 natural,

people	 are	 unpredictable”.	 “I

think	that	the	books	help	people

to	 understand	 how	 to	 have	 a

discussion	 around	 emotionally

sensitive	or	difficult	topics.”

Read	more	from	Pat	at:

www.thekua.com/atwork/

and	are	never	truly	resolved.

However,	 Kua	 has	 also	 seen

those	 that	 think	 they	 “need	 to

demonstrate	 that	 I’m	a	Leader,

they’ll	 want	 to	 still	 make	 all	 of

the	 heavy	 technical	 choices,	 so

they’ll	 want	 to	 be	 involved	 in

every	technical	discussion”.	And

while	 “I	 think	 these	 two

extremes	 are	 elements	 that

good	Tech	Leads	should	be	able

to	 play”,	 “they	 shouldn’t	 be

playing	that	mode	of	Tech	Lead

all	 of	 the	 time”.	 Kua

recommends	 an	 understanding

of	 the	 situation	 leadership

model,	 “which	 kind	 of	 talks

about	 situations	 where	 more

directive	 behavior	 is	 useful.

Where	 maybe	 more	 targeted

coaching	 is	 useful,	 and	 where

perhaps	 pure	 delegation,	 and

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

So	 Kua	 suggests	 “having	 some

sort	 of	 visible	 sign	 that	 says

‘actually	 I	 need	 some	 quiet

time’”.	 “What	 I’ve	 used

personally,	for	instance,	is	a	flag

on	the	desk	to	indicate	when	it’s

no	 interruption	 time”.	 “Other

Tech	Leads	take	themselves	out

of	the	working	space.	So	they	go

off	to	a	quiet	room,	they	book	a

meeting	room	and	then	they	sit

in	the	room	by	themselves.	Just

so	 that	 they	 can	 go	 through	 a

few	 things	 in	 quiet	 time.

Another	 way	 is	 to	 maybe	 offset

your	 day	 as	 well.	 So	 either,

start	 early	 or	 end	 late,	 but	 do

the	same	sort	of	hours.	And	this

kind	of	helps	you	to	get	through

all	 of	 those	 things	 before

everyone	else	gets	there	into	the

workplace	 and	 interruptions

start	to	come”.

Common	Mistakes

“I’ve	 worked	 with	 a	 lot	 of

developers,	trying	to	coach	them

into	 this	 new	 role”,	 says	 Kua.

“When	 you	 watch	 new

developers	 go	 into	 this	 role	 for

the	 first	 time,	I	 think	there	are

two	streams”.	“There’s	the	Tech

Lead	 that	 believes	 that	 the

entire	 team	 should	 be	 self-

empowered,	 every	 developer

should	 know	 what	 they	 should

do,	and	the	Tech	Lead	wants	to

have	 trust	 in	 everyone”.	 “So

they	 sort	 of	 just	 sit	 back	 and

hope	 for	 the	 best.	 And	 I	 think

this	 is	 where	 things	 get	 a	 bit

dangerous	 if	 the	 team	 hasn’t

gotten	 into	 that	mode	and	 they

don’t	 already	 have	 that	 strong

vision”.	 Typically	 then,	 in	 the

absence	of	 true	 leadership,	 “the

most	 opinionated	 developers

sort	 of	 pipe	 up	 and	 they	 form

the	 direction	 themselves”	 and

this	 can	 “quickly	 fall	 apart”,

says	 Kua.	 When	 this	 happens

“people	 spend	 a	 lot	 of	 time

arguing	 and	 the	 same	 things

come	 up	 over	 and	 over	 again”

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

from	 Tech	 Leads,	 that	 end	 up

being	 developed	 is	 this	 kind	 of

translation,	 where	 you’re	 kind

of	 trying	 to	 avoid	 all	 of	 the

technical	 terms	 and	 trying	 to

express	 it	 in	 ways	 that	 your

normal	 family	 members	 might

be	able	to	understand	who	don’t

understand	 technology

whatsoever.	 But	 you	 kind	 of

need	their	buy-in	to	understand

why	 you’re	 going	 a	 certain

direction	with	things”.

To	 help	 build	 those	 skills	 Kua

recommends	 the	 book	 ‘Getting

To	 Yes’.	 “The	 book	 is	 about

negotiating,	 and	 it’s	 about

trying	 to	 come	 up	 with	 a	 good

way	forward	while	you’re	trying

to	 appease	 both	 sets	 of

interests.	 I	 think	 it	 has	 some

really	 great	 stories	 that	 help

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

https://www.thekua.com/atwork/

36

that	 I	 had	 during	 the

day”	and	then	he	would

ask	 some	 trusted

colleagues	 “what	 they

would	 do	 in	 this

situation”.	 What	 he

found	was	that	by	“just

having	 a	 discussion

around	 the	 dilemmas

you	 have,	 you	 can

really	open	up	 the	way

you	 are	 thinking,”

explains	Ellenbogen.

Another	 key	 aspect	 for

any	 engineering	 leader

is	 “to	 know	 the

business	 inside	 out,”

says	 Ellenbogen.	 “I

know	 there	 are	 many

engineers	 and

engineering	 managers

that	 feel	 that	 business

is	not	our	job —  it’s	the

sales	 guys,	 it’s	 the

marketing	 guys…	 but

you	 can	 spend	 many,

many	days	at	the	office

writing	software	just	to

find	 out	 that	 nobody

uses	it.”	So	if	you	want

AAAAAAAAAAAAAAA

A

..

Oren	Ellenbogen	is	the	author	of

‘Leading	Snowflakes’,	and	in	this

interview,	he	discusses	some

important	tips	for	those	moving

into	Developer	team	leadership.

really	 fast	 feedback

cycle.	 We	 have	 code

review,	 we	 can	 deploy

code	 and	 see	 tests

running,	 and	 run	 it	 in

production.”	 But	 we

don’t	 have	 such

e s t a b l i s h e d

mechanisms	 in

management	 decision

making.	 However,

Ellenbogen	 says	 that

this	should	not	stop	you

—  “great	 engineering

management	 develop

good	 ways	 to	 bring	 in

feedback,	 rather	 than

just	 sitting	 in	 the	 dark

and	feeling	alone.”

“A	 trick	 that	has	 really

worked	 well	 for	 me”,

says	Ellenbogen,	is	code

reviewing	 management

decisions.	 Ellenbogen

took	 “the	 concept	 of

code	review	and	applied

it	 to	 management.”	 By

this	he	explains	that	he

would	 “capture	 one	 or

two	 of	 the	 dilemmas

AAAAAAAAAAAAAAA

A

“I	 would	 definitely

advise	you	to	earn	your

teammates’	 trust	 first,”

begins	 Ellenbogen.	 “If

you	want	them	to	follow

your	 authority	 as	 a

manager,	 you	 have	 to

make	 sure	 you	 know

how	to	build	the	trust	of

others,	 starting	 with

your	teammates.	Figure

out	a	way	 to	 earn	 their

trust	 -	 maybe	 it’s	 your

technical	 skills,	 maybe

it’s	 your	 business

understanding,	 maybe

it’s	a	mix	of	everything.

But	 don’t	 take	 it	 for

granted	 and	 think	 that

just	because	you	have	a

title,	 that	 everyone

should	 do	 what	 you

say.”

With	 your	 credibility

established,	 Ellenbogen

suggests	you	then	“clear

the	 path	 to	 get	 more

feedback”.	 He	 explains

that	 “as	 engineers	 we

have	 the	 luxury	 of	 a

AAAAAAAAAAAAAAA

A

Become	the	Leader	Your	Engineers	Need

Oren	Ellenbogen

If	you	want	them

to	follow	your	authority

as	a	manager,	you	have

to	make	sure	you	know

how	to	build	the	trust	of

others

Practical	tips	for	Programmers	who	want	to	lead

http://lnbogen.com/book/

37

to	do	what’s	 in	 the	best	 interests	 of	 your	 team,

then	 figure	 out	 the	 business	 so	 you	 can

“understand	 the	 risks,	 understand	 the	 current

capabilities	 that	 will	 help	 your	 business	 scale

and	 how	 you	 can	 convey	 the	 message	 to	 your

teammates,”	suggests	Ellenbogen.

Managers	Should	Code

A	 concern	 for	 many	 considering	 a	 move	 into

management	 is	 whether	 they	 still	 get	 to	 code.

But	Ellenbogen	suggests	that	at	least	at	first,	“I

would	 advise	 you	 focus	 on	 feeling	 comfortable

with	 your	 role	 as	 an	 engineering	 manager.”

Coding	is	a	safe	activity	for	any	developer,	so	“if

you	 are	 finding	 yourself	 always	 shutting	 down

and	 getting	 back	 to	 writing	 code	 all	 the	 time,

that	is	kind	of	a	red	flag.	That	means	you	should

probably	just	avoid	writing	code	and	focus	more

on	the	people	aspect,	or	on	the	business	aspect,

and	 stop	 writing	 code,”	 says	 Ellenbogen.	 “You

have	 to	 feel	 like	 your	 teammates	 are	 being

productive	 and	 you	 are	 not	 being	 called	 on	 to

save	 the	 day.	 Once	 you	 are	 feeling	 more

comfortable	 with	 that,	 then	 you	 can	 go	 back	 to

writing	code.”

But	it	is	important	that	you	do	still	write	code	in

the	long-term,	says	Ellenbogen.	At	the	very	least

you	want	“to	keep	your	technical	skills	at	a	high

level”	so	that	you	can	“make	sure	you	are	a	part

of	 the	 conversation	when	your	 teammates	need

you”.	 When	 you	 do	 so,	 “focus	 on	 fixing	 bugs,

dealing	with	nasty	performance	issues,	reducing

technical	 debt…	 or	 work	 on	 tools	 that	 will

increase	 the	 productivity	 of	 your	 teammates.”

But	regardless	of	what	you	do,	“you	should	avoid

being	 on	 the	 critical	 path.”	 Interruptions	 are

common	 and	 you	 don’t	 want	 to	 be	 your	 team’s

bottleneck.

How	to	Stretch	Your	Team

To	get	the	best	out	of	your	team,	sometimes	it’s

necessary	to	push	members	out	of	their	comfort

zones.	But	what’s	the	best	way	to	go	about	this?

“Start	 by	 setting	 an	 example	 that	 people	 can

emotionally	 connect	 with,”	 advises	 Ellenbogen.

“I	 shared	 my	 struggles	 with	 the	 team…	 I	 was

just	 honest	 with	 my	 teammates…	 but	 later	 on

when	 I	 talked	 with	 them	 about	 pushing	 them

out	 of	 their	 comfort	 zone,	 just	 being	 able	 to

relate	to	the	way	that	I	have	been	honest	about

my	 struggles	 just	 made	 the	 conversation	 a	 lot

easier.”

Beyond	 that,	 Ellenbogen	 suggests	 that	 you

provide	 “examples	 from	 inside	 the	 organization

so	they	can	see	how	it	could	be.	For	example,	if	I

want	to	push	someone	out	of	their	comfort	zone

regarding	the	way	they	are	communicating	their

progress,	 I	 would	 forward	 emails	 from	 other

teammates	 or	 other	 teams	 in	 the	 organization

who	 are	 doing	 a	 brilliant	 job	 at	 it,”	 explains

Ellenbogen.	They	can	then	pick	a	few	things	up

from	these	and	we	 can	 then	 “talk	about	 it	next

time	 in	 our	 one-on-one	 and	 have	 a	 discussion

around	that.”

Scaling	an	Engineering	Team

“Often	 engineering	 managers	 try	 to	 own

everything,”	 says	 Ellenbogen.	 “They	 try	 to	 own

the	people	 aspect,	 try	 to	 own	 technical	 aspects,

strategy,	 business”.	 There’s	 just	 one	 problem

with	 this	 approach —  it	 doesn’t	 scale.	 So	 what

you	 must	 do,	 according	 to	 Ellenbogen,	 is

“leverage	 the	 fact	 that	 you	 have	 great	 people

working	 with	 you”.	 He	 recommends	 that	 you

delegate	 ownership	 of	 key	 areas	 like	 code

quality,	 to	 team	 members	 with	 a	 passion	 for

them.	Regardless,	 “I	make	sure	that	every	time

someone	comes	to	me	and	says,	 ‘hey,	we	have	a

problem	 that	we	need	 to	 fix’,	 I	write	 it	 down.	 I

never	ignore	it,”	says	Ellenbogen.	Then	“I	make

sure	 we	 pick	 a	 few	 things	 we	 want	 to	 work	 at

every	 couple	 of	 weeks	 or	 every	 month…	 so	 the

team	feels	like	things	are	not	being	ignored.”

Working	with	Other	Teams

Finally,	 a	 key	 part	 of	 the	 success	 of	 any	 team

isn’t	 just	 individual	 team	 brilliance,	 but	 your

ability	 to	 work	 well	 as	 part	 of	 the	 wider

organization.	 To	 this	 end,	 Ellenbogen	 suggests

that	a	great	first	step	is	to	“share	your	plan	for

the	next	few	months	or	the	next	few	weeks	with

your	 peers”.	 “It	 might	 sound	 obvious,”	 says

Ellenbogen,	 “but	 from	 my	 experience,	 very	 few

do	 it.”	 He	 suggests	 that	 you	 “try	 to	 share	 as

much	 as	 you	 can	 with	 others	 so	 they	 can

understand	 what’s	 the	 plan	 and	 where	 you	 are

heading.”	 Then	 follow	 this	 up	 by	 “asking	 for

their	 opinion”	 and	 getting	 feedback	 from	 their

perspective.	Then	“if	 things	change,	and	that	 is

alright,	make	sure	that	you	keep	everyone	in	the

loop.”

Read	more	from	Oren	at:	www.lnbogen.com

..

http://lnbogen.com/

38

Growing	Self-organizing	Software	Teams

How	to	develop	teams	with	different	phases	of	leadership

						If	you	get
hit	by	a	bus
tomorrow,
could	the
team	continue
to	function
without	you?

..

Roy	Osherove

Roy	Osherove,	author	of	‘Notes	to

a	Software	Team	Leader’,

discusses	how	to	grow	self-

organizing	software	teams.	He

covers	how	to	develop	team

members,	different	phases	of

leadership,	and	some	common

mistakes	made	by	new	tech	leads.

reality	that	they’re	in”.

Osherove	 says	 you

should	ask	yourself	“are

you	 the	 bus	 factor?	 In

other	 words,	 if	 you	 get

hit	 by	 a	 bus	 tomorrow,

could	the	team	continue

to	 function	 without

you?	 If	 the	 answer	 is

no,	 then	 you	 don’t

really	 have	 a	 team.

What	 you	 have	 is	 a

bunch	of	people	 to	help

you”.

To	 gauge	 whether

you’re	 moving	 in	 the

right	 direction	 with

this,	 each	 week	 ask

yourself	 whether	 “the

team	 need	 me	 more	 or

less	 than	 last	 week?	 If

they	 need	 me	 less,	 if	 I

make	 myself	 less

needed,	 if	 I	 remove

myself	 from	 the

equation,	 not	 just	 by

disappearing	 but	 by

enabling	the	team	to	do

the	 things	 that	 I	 know

how	 to	 do,	 then	 I’ve

AAAAAAAAAAAAAAA

A

Often	 developers	 can	 be

reluctant	 to	 put

themselves	 forward	 for

leadership	 roles,	 but

Osherove	 says	 that

whilst	 it	 can	 be	 scary,

“it’s	 not	 something	 that

should	 block	 you”.	 In

fact,	 if	 you	 want	 things

to	 change,	 then	 you

should	 actively	 seek	 it

out.	 “Remember	 all

those	 things	 that	 you’ve

always	 wanted	 your

manager	or	leader	to	do?

You	 can	 actually	 get	 to

do	 them…	 It’s	 a	 great

chance	 to	 change	 the

environment,	 and	 not

just	bitch	about	it,”	says

Osherove

Growing	Team

Members

In	 his	 book,	 Osherove

explains	 that	 “a	 team

leader	 grows	 the	 people

on	 their	 team,”	 and	 he

thinks	 that	 this	 should

be	the	key	thing	driving

AAAAAAAAAAAAAAA

A

your	behavior	as	a	lead.

“It’s	 almost	 required,”

says	 Osherove.	 “If	 you

don’t	 do	 it,	 you’re

basically	stopping	in	the

same	 place	 and	 you’re

not	 actually	 changing

anything”.	Furthermore,

“if	you	want	the	team	to

do	 unit	 testing	 or	 test-

driven	development,	but

the	 team	 itself	 thinks

it’s	 not	 such	 a	 great

idea,	 how	 do	 you

actually	 get	 them	 to	 do

it	without	growing	them

in	the	right	direction?”

“Another	 thing	 that

happens	 is	 that	 a	 lot	 of

teams	 are	 actually	 not

in	a	position	where	they

can	 actually	 make	 good

decisions,”	 says

Osherove.	 So	 “as	 a

leader,	 you	 are	 the

bottleneck.	 They	 come

to	 you	 with	 every	 little

decision”,	 but	 “what	 we

want	 is	 for	 a	 team	 to

grow	their	skills	so	they

can	 handle	 the	 current

AAAAAAAAAAAAAAA

A

39

..

coach.	 You	 have	 to	 get	 people

out	 of	 survival	 mode	 and	 into

learning	mode.	 If	you	mix	 those

things	 up,	 you	 have	 a	 problem.

Suddenly,	 you’re	 not	 really

helping	 the	 situation.	Similarly,

if	 you	 have	 a	 self-organizing

team	that	already	knows	how	to

work,	 already	 knows	 how	 to	 do

something,	 and	 you	 treat	 them

as	 if	 they’re	 in	 survival	 mode

with	 micromanagement	 and

command-and-control,	 you’re

going	 to	 lose	 your	 team	 very,

very	 quickly.”	 The	 particularly

difficult	 part	 though,	 says

Osherove,	 is	that	“the	mode	can

change	 from	 day	 to	 day.	 You

have	 a	 new	 project,	 and

suddenly	 you	 are	 back	 in

survival	mode.”

Read	more	from	Roy	at:

www.5whys.com

that	 they	 tell	 people	 what	 they

want	 to	 hear	 instead	 of	 telling

them	 what	 the	 reality	 is,

because	 they’re	 really	 scared

and	 they	 want	 to	 make	 a	 good

impression”.	 But,	 “we	 get	 paid

to	 do	 good	 work	 and	 to	 say	 if

there’s	 a	 problem,”	 although	 it

really	 “takes	 a	 while	 to	 learn

that.”

Another	 common	 mistake	 that

Osherove	 highlights	 is	 not

considering	the	mode	their	team

is	in,	and	the	appropriate	phase

of	 leadership	 to	 apply.	 For

example,	“in	learning	mode,	you

definitely	 want	 to	 be	 a	 coach.

You	 want	 to	 teach	 people.	 You

want	to	give	them	time	to	do	it.

In	 survival	 mode,	 you	 usually

want	 to	 be	 command-control.

You	 don’t	 want	 to	 start

coaching.	You	don’t	have	time	to

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

basically	made	them	better”.

Phases	of	Leadership

In	 Osherove’s	 view,	 there	 are

three	 main	 phases	 of

leadership.	 There’s	 “survival

mode,	 where	 you	 don’t	 have

time	 to	 learn,	 you	 don’t	 have

time	 except	 only	 to	 react;

learning	 mode,	 where	 you’re

supposed	 to	 do	 things	 and	 fail

and	learn	and	do	things	slower;

and	self-organization,	where	the

team	can	handle	their	situation

without	requiring	the	leader”.

Osherove	 explains	 that	 “you

know	you’re	 in	survival	mode	 if

you	 don’t	 have	 any	 time	 to	 do

the	 things	 that	 you	 would	 like

to	 do,	 and	 you	 keep	 reacting

instead	of	planning.	Even	if	you

have	 time	 to	 send	 people	 on	 a

two-day	course,	 it	doesn’t	mean

that	 you	 have	 time	 to

implement	 what	 they	 learn.	 If

you	 don’t	 have	 time	 to	 do	 slow

practice,	 you’re	 in	 survival

mode.”

Of	 course,	 life	 is	 rarely	 as

simple	 as	 being	 in	 a	 specific

binary	 state.	 But	 Osherove

explains	that	“it	could	be	that	a

part	 of	 the	 team	 is	 in	 survival

mode	and	a	part	 of	 the	 team	 is

self-organizing.	 If	 you	 have	 a

large	 enough	 team,	 you	 might

start	 to	 get	 cliques	where	 some

people	 are	 doing	 okay,	 whilst

some	 people	 are	 definitely

buried	deep”.	But	“the	way	I	see

it	 is	 that	 it	 always	 hunkers

down	 to	 the	 lowest	 common

denominator.	 That	 means	 that

if	 a	 part	 of	 the	 team	 is	 in

survival	 mode,	 your	 team	 is	 in

survival	mode”.

Mistakes	Made	By	New

Tech	Leads

“I	think	one	of	the	most	common

mistakes,”	 says	 Osherove,	 “is

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

Creeker	Wisdom
"Clout	 disrupts	 meaningful	 discussion.	 If	 you're	 the

one	with	clout	 (say,	you're	some	sort	of	manager	or

lead)	be	mindful	 that	until	you	build	a	strong	rapport

with	 someone,	 going	 against	 your	 opinion	 is	 scary

and	 accepting	 your	 criticism	 constructively	 can	 be

hard.	 There	 will	 be	 some	 people	 with	 whom	 you'll

never	 gain	 sufficient	 rapport.	 There	 will	 be	 people

who	bottle	up	their	opinion	instead	of	confronting	you.

There	 are	 many	 ways	 to	 help	 this,	 but	 I	 have	 no

single	 recipe.	Mindfulness	 is	 key,	however,	because

if	you're	 ignorant	of	 it	 then	your	clout	can	drown	out

the	 very	 voices	 you	 depend	 on.	 If	 you're	 talking	 to

someone	with	 clout,	 be	 fearless,	 ask	 questions	 and

have	a	meaningful	presence	in	the	discussion."

-	Jude	Allred,	CTO	at	Fog	Creek

http://5whys.com/

40

‘The	Pragmatic	Programmer’,	Hunt	and	Thomas

‘The	Mythical	Man-Month’,	Brooks

‘The	Art	Of	Computer	Programming’,	Knuth

‘Effective	Java‘,	Bloch

‘Code	Complete’,	McConnell	

‘Design	Patterns’,	Gamma,	Helm,	Johnson	and

Vlissides

‘Purely	Functional	Data	Structures’,	Okasaki

‘Extreme	Programming	Explained’,	Beck

‘C#	In	Depth‘,	Skeet

‘Thinking	In	Java‘,	Eckel

‘The	C#	Programming	Language’,	Hejlsberg,

Torgersen,	Wiltamuth	and	Golde

‘Apprenticeship	Patterns’,	Hoover

‘Metaprogramming	Ruby’,	Perrotta

‘Becoming	a	Technical	Leader’,	Weinberg

‘Management	3.0’,	Appelo

‘Ada’s	Algorithm‘,	Essinger

‘Peopleware’,	DeMarco	and	Lister	

‘Agile	Management	From	Software	Engineering’,

Anderson

‘Getting	to	Yes’,	Fisher	and	Ury

We	asked	all	contributors	for	their	favorite	books	about	programming	and	technical

leadership.	Here's	what	they	recommended.

Recommended	Reading

..

We	Had	a	Different	Idea...

Fog	Creek	Software	began	in	2000,	after	our	founders,	Joel	Spolsky	and	Michael	Pryor,	had	trouble	finding	a	place	to

work	 where	 programmers	 had	 decent	 working	 conditions	 and	 got	 an	 opportunity	 to	 do	 great	 work.	 At	 that	 time,

developers	 were	 treated	 like	 typists,	 and	 yet	 companies	 still	 complained	 that	 they	 couldn't	 hire	 great	 software

developers,	and	they	struggled	to	make	products	people	actually	wanted	to	use.

So	we	came	up	with	a	different	idea	-	what	if	we	started	our	own	business	where	we	only	recruited	the	best	software

people,	we	treated	them	well,	and	then	got	the	heck	out	of	their	way?

Well,	it	worked.	Since	then	we've	been	creating	great	software	products	that	are	used	and	loved	by	millions	of	people.

These	include:

Let's	Make	The	Future

We	take	a	similar	approach	to	our	products	too.	Rooted	in	a	deep	understanding	of	the	realities	of	building	software,

they're	designed	to	help	you	get	the	job	done.	But	otherwise,	they	get	out	of	your	way	so	you	focus	on	what's	really

important	-	working	together	to	make	things.	Whether	that's	making	code	work	on	Stack	Overflow,	organizing	things	in

Trello,	or	building	software	with	FogBugz	or	HyperDev.

And	what	we're	making	is	the	future.	Far	from	just	being	typists,	our	whole	world	is	now	infused	by	the	software	that

we're	building.	Software	is	waking	us	up	at	just	the	right	time.	It's	hailing	the	cab	and	guiding	us	to	our	next	meeting,	and

it's	finding	us	a	great	place	to	eat	at	the	end	of	a	busy	day.	Our	whole	lives	are	informed	by	and	run	with	software.	And

this	is	only	the	beginning.	So	let's	make	the	future.

Work	Tracking	and	Collaboration
Used	to	manage	over	20,000	software-led	businesses	and	teams

Four	products	that	work	together
-	Tasker:	Task	Management
-	Issue	Desk:	Helpdesk	and	Issue	Tracking
-	Agile:	Agile	Project	Management

-	Dev	Hub:	Software	Development	Management

On	Demand	or	On	Site
With	 On	 Demand,	 FogBugz	 is	 hosted	 by	 us	 in
the	 Cloud	 for	 ease	 of	 access	 and	 flexibility.	 Or
with	 On	 Site,	 you	 can	 host	 it	 on-premises	 for

enhanced	control.	Either	way,	you	get	 the	same
powerful	features	and	world-class	support.

Focus	on	real	work,	not	managing	it

There's	no	time-consuming	setup	or	confusing
customization.	Workflows	are	simple	yet
flexible.	FogBugz	provides	everything	you
need	to	plan,	build	and	ship	software.

Learn	more	at	fogcreek.com/fogbugz

Trusted	By

FogBugz

http://www.fogcreek.com/fogbugz/

Make	Better	Software
A	collection	of	interviews	with	makers	about	the	craft	of	software	development,	hiring,	and	technical	leadership

Volume	1

by	Fog	Creek	&	Friends

