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ABSTRACT
Connecting consumers with relevant products is a very important
problem in both online and offline commerce. In many offline retail
settings, product distributors extend bids to place and manage prod-
uct displays within a retail outlet. The distributor aims to choose
a spatial allocation strategy that maximizes revenue given a pre-
set budget constraint. Prior work shows that carefully selecting
product locations within a store can minimize search costs and
and induce consumers to make "impulse" purchases. Such impulse
purchases are influenced by the spatial configuration of the store.
However, learning important spatial patterns in offline retail is
challenging due to the scarcity of data and the high cost of ex-
ploration and experimentation in the physical world. To address
these challenges, we propose a stochastic model of spatial demand
in physical retail, which we call the Probabilistic Spatial Demand
Simulator (PSD-sim). PSD-sim is an effective mirror of the real envi-
ronment because it exploits the structure of common retail datasets
through a hierarchical parameter sharing structure, and is able to
incorporate spatial and economic knowledge through informative
priors. We show that PSD-sim can both recover ground truth test
data better than baselines, and generate new data for unseen states.
The simulator can naturally be used to train policy estimators that
discover intelligent, spatial allocation strategies. Finally, we per-
form a preliminary study into different optimization techniques and
find that Deep Q-Learning can learn an effective spatial allocation
policy.
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1 INTRODUCTION
Over the past two and half decades the internet has transformed the
nature of commerce. E-commerce platforms have thrived because
of the data rich environment of the world wide web. Through
data driven methods, internet retailers are able to find surpluses
in demand and connect the right product with the right consumer.
Simultaneously, many offline distributors and retailers have fallen
behind partially due to the data poor environment of the offline
world.

Consider the case of consumer packaged goods (CPG): a mer-
chandiser for a large distributor (e.g., Coca-cola) makes bids to place
product displays inside of a large retailer (e.g., Wal-mart). A large
retailer may offer hundreds of product displays. The distributor
historically makes allocation decisions using heuristics or intuition.
For example, he or she may arbitrarily choose to allocate Coca-cola
products near the deli, when the products may actually drive more
revenue if placed near the checkout (see Figure 1). In an effort to
close this gap and improve the effectiveness of offline retail pro-
cesses, we study the product allocation problem in physical retail.
In this problem, the distributor aims to allocate product across the
store by placing bids on discrete locations. The key question for the
distributor is, how to choose locations for its products to maximize
revenue subject to a budget constraint?

Effective spatial allocation strategies can increase revenue by
connecting products with consumers. On one hand, consumers
might find it difficult to locate what they really need in a store.
Proper placement can reduce the consumer’s search costs and help
sell more products. On the other hand, consumers often purchase
products on an impulse, i.e., buying products they had not intended
to buy beforehand. For example, suppose a shopper visits a super-
market intending to purchase groceries. As the shopper checks out
he sees a soft drink beverage placed near the cash register, and
adds it to his cart. The shopper’s decision to purchase the drink
was in part a function of the environmental cues and placement of
the product [19]. Proper placement can maximize such "impulse"
purchases[3].

https://doi.org/10.1145/3486184.3491078
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Figure 1: An example of the spatial product allocation prob-
lem in physical retail. We provide a sample floor plan of a
small, retail environment (a). Each section of the store is
partitioned into “regions” (e.g., r1). The distributor has to
choose the regions inwhich to put each of five possible prod-
ucts. The current product locations are plotted as colored x ’s.
We visualize the current allocation strategy as a state ma-
trix, where blue components denote a given region, product
combination has been selected (b). We also show the histor-
ical spatial distribution of revenue as a heat map (c). Darker
colors indicate more historical revenue. The figure suggests
that the current configuration may be sub-optimal.

In addition to commercial applications, successfully learning
spatial demand can have impact in society. For example, under-
standing demand for public transportation can inform placement of
bus stops, thereby increasing overall utility of a city. The methods
outlined in this work could be extened to other domains.

Some existing work explores domains adjacent to the spatial
product allocation problem. A large body of operations research
analyzes shelf space distribution. For example, early work proposed
a dynamic programming algorithm to discover an optimal shelf
allocation strategy [27]. Other work poses shelf space allocation as
a constrained optimization problem that can be solved via simulated
annealing [4]. More contemporary studies propose frequent pattern
mining approaches to determine profitable product item sets [13]
[1]. To the best of our knowledge, none of the existing literature
has studied the spatial effects of product locations across the entire
store.

However, learning a strategy for spatial product allocation is
non-trivial. First, the number of candidate allocation strategies is
large but the historical data usually only explores a small subset
(see Figure 3). Moreover, sales are also correlated with other factors
such as holidays and store promotions, which makes the search
space even bigger. Because of this issue of data sparsity we cannot
directly rely on historical data to learn the best strategy. Second, the

cost of experimentation and exploration is high. It is not feasible to
perform extensive experiments due to the potential lost revenue and
the physical cost of moving products around the store. Finally, the
correlation between product positions and sales is likely complex
and non-linear due to the dynamic nature of the market; simple
search heuristics may not provide an optimal policy. For all of these
reasons, we need an approach that allows for experimentation and
counterfactual exploration in a cost-effective way.

Therefore, we design a new framework to solve these challenges.
We formulate the spatial product allocation problem as a Markov
Decision Process (MDP) and propose the Probabilistic Spatial De-
mand Simulator (PSD-sim), which is a stochastic model of spatial
demand for physical retail. PSD-sim has three model features that
facilitate better learning of complex demand patterns: 1) a hierar-
chical parameter sharing structure; 2) spatial covariance priors to
capture spatial demand; 3) product substitution effects learned from
online Amazon review data.

We propose PSD-sim as amechanism to studymore sophisticated
search algorithms such as reinforcement learning without incurring
the high cost of exploration in the physical world. We calibrate
PSD-sim using a real-world dataset of Coca-Cola products. Addi-
tionally, when deployed online, PSD-sim could be used to perform
Monte Carlo rollouts for efficient exploration and experimentation
[11]. In our experiments, we demonstrate that PSD-sim can effec-
tively recover ground truth test data in two retail environments.
Additionally we explore interesting features of the model. Finally,
we do a preliminary study into different optimization techniques
using PSD-sim.

In summary the key contributions of our paper are:

• We study the new problem of spatial product allocation in
physical retail

• We propose a novel environment model, which we call the
Probabilistic Spatial Demand Simulator (PSD-sim) that fea-
tures hierarchical parameter sharing, spatial covariance pri-
ors, and product substitution effects.

• We train PSD-sim on real data from two different retail stores
and show it is more effective than existing, discriminitive
baselines.

• We do a preliminary study into various optimization meth-
ods and show that Deep Q-Learning can learn an effective
allocation policy

2 PROBLEM DEFINITION
In the following section, we provide a formal definition of the
spatial allocation problem. Additionally, we define the necessary
components of our reinforcement learning agent: the state space,
action space, reward function, and state transition function.

2.1 Spatial Allocation Problem
In a physical retail environment with a set of n spatial regions,
we represent the environment with a spatial graph G = (R, E),
where each region ri ∈ R is a vertex in the graph, the spatial
neighboring relation between two regions ri and r j are represented
as an edge, ei j ∈ E. From G, we can construct the adjacency matrix,
A. Additionally, we observe a set of k products, M = {mj : 0 <
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j <= k} that are sold. For each product, mj , we know the retail
price, pj .

The decision process faced by the retailer or manufacturer is
to allocate each product inM across regions in R. We define the
allocation policy as a function f :

f : R ×M → Z (1)

Z = {⟨ri ,pj ⟩, ...⟨rw ,pq⟩} (2)
WhereZ is the set of selected product region, such thatw <= n,

q <= k andZ ⊆ R ×M. This function is typically dynamic over
time, which we denote as f t . To simplify computation, we treat
Zt as an (n × k) grid and refer to it as the board configuration at
time, t . An optimal retail strategy is to find the allocation policy
that maximizes revenue:

f ∗ =
T∑
t

argmax
f t

∑
i, j ∈f t (R,M)

pjqi (3)

wherepj is the price for productmj , and qi is the quantity sold in
region ri andT is the future time horizon of analysis. The main idea
of the current work is to discover the long-term, optimal allocation
policy, f ∗ from data.

2.2 Spatial Allocation as a Markov Decision
Process

We believe that the spatial allocation problem is well suited for rein-
forcement learning because the RL agent is designed for sequential
decision making that maximizes expected discounted reward over
time. We frame the inputs as a Markov Decision Process (MDP).
An MDP is defined by the tuple ⟨S,A, P , r ,δ⟩, where S is the state
space, A is the set of possible actions, P is the (typically unkown)
state transition function, r is the reward function and δ ∈ [0, 1] is
the discount factor.
• State At each time, t , we observe the state of the retail envi-
ronment, G. We define the state, st ∈ S, as the tuple of state
features, st = ⟨Zt ,dt , g(t−1)⟩, whereZt is the current board con-
figuration, dt is the current day of the week (e.g., Sunday → 0),
and g(t−1) is a vector denoting the revenue at the previous time,
(pjqi )

(t−1)∀z ∈ Zt

• Action We define the action space A = R ×M × {−1, 1} ∪ {0},
indicating “to place”, “take way” or “do nothing” for each product,
mj in each region, ri .
• Reward The reward function in this case is the total product
revenue at time t , constrained by the monetary cost, c , of placing a
set of products in each region:

r (t) =
n∑
i=1

k∑
j=1

pjq
t
i j − c

n∑
i=1

1Z(ri ) (4)

The second term in the reward function accounts for the cost
faced by the manufacturer who typically has to pay for each space
in a retail environment.
• State transition function: The state transition, P is defined as
p(st+1 |st ,at ) : S × A × S → [0, 1], which gives the probability of
moving to state, s(t+1) given the current state and action. In the spa-
tial allocation problem the exact transition function, P , is unknown

since the current state, st depends on the results of the previous
time, g(t−1). We model this transition as a stochastic process.

3 PROPOSED METHOD
In this section, we define our framework for solving the spatial allo-
cation problem. We first outline our proposed environment model
that is used to simulate spatial demand. We propose two variants
of the environment model. The first assumes that spatial weights
are homogeneous across products. The second allows for heteroge-
neous spatial weights and parameter sharing across regions.

3.1 Stochastic Model of Spatial Demand
We propose the following stochastic model of spatial demand in
physical retail, which we call the Probabilistic Spatial Demand
Simulator (PSD-sim). See Figure 2 for an overview. In the current
work, the stochastic model is used as a ‘simulator’ to enable offline
policy learning. There are many advantages of using a probabilistic
model in the optimal product allocation problem. First, it allows us
to exploit structure in our dataset. We are able to share parameters
across spatial groups for added data efficiency. Second, we are
able to incorporate prior knowledge about the data generating
process, as well as prior knowledge from secondary data sets. Third,
it provides a natural framework for simulating future scenarios
through Monte Carlo roll-outs.

Our ultimate objective is to maximize total revenue at time, ρ(t ),
which is defined as ρ(t ) =

∑n
i=1 ρ

(t )
i , where ρ(t )i is the revenue for

region, ri . Region-level revenue is calculated over products, mj :
ρ
(t )
i =

∑k
j=1 pjq

(t )
i j .

The key variable of interest is, q(t )i j , the quantity sold for product,

mj , region, ri , at time, t . We model q(t )i j as a truncated normal

random variable, q(t )i j ∼ ψ (µ,σ ,a,b)

where, ψ (µ,σ ,a,b) is the pdf of the truncated normal distribu-
tion:

ψ (x ; µq ,σq ,a,b) = 
0 ifx ≤ a

ϕ(µ,σ 2;x )
Φ(µ,σ 2;b)−Φ(µ,σ 2;a) ifa < x < b

0 ifb ≤ x

(5)

The term, ϕ(z) is the standard normal pdf, and Φ(z) is its cumu-
lative distribution function:

ϕ(z) =
1

√
2π

e−
z
2
2

(6)

Φ(z) =
1
2

(
1 + erf

(
z√
(2

))
(7)

See [5] for more details. We set a = 0 and b = +∞, which forces
Φ(µ,σ 2;b) = 1 and constrains the quantity, q(t )i j ∈ R+. The prior for

q
(t )
i j is characterized by the mean, µq , which is a linear function of
environment features, x and learned weights, w, and the inverse
gamma distribution for the variance, σq :
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Figure 2: An overview of both PSD-sim-linear (left) and PSD-sim (right) each as a Bayesian network. The boxes are “plates”
representing structures in the data. The plates marked by k , n andT represent products, regions, and time, respectively. Circles
denote random variables and squares are deterministic quantities. Both models decompose quantity as a function of region,
product, time, and auto-regressive weights. The two differ in the structure of the region-level weights, wr . The PSD-sim-linear
assumes a single weight vector for all regions, while PSD-sim has a hierarchical structure that also allows region-level weights
to vary by product.

µq = x⊤w + b, σq ∼ IG(αq , βq ) (8)

In our environment, we observe temporal features, xt , region
features, xr , product features, xp , and autoregressive features, xs :
x = [xt ,xr ,xp ,xs ]⊤. We discuss our feature extraction approach
more in Section 3.5

3.1.1 Region-level Weights. We initially model the weights for
each spatial region with a multivariate normal distribution, with
mean vector, µr and precision matrix, Qr :

wr ∼ N(µr ,Qr ) (9)

Qr = γ L̃ = γ (I − D̂− 1
2 ÂD̂− 1

2 ) (10)

We are able to encode graph information into our prior for wr
by computing the adjacency matrix, A from G and computing the
normalized graph Laplacian, L̃. Doing so allows us to put a spa-
tial prior over the variance of the region weights. We use this as
our precision matrix [7] times a scale factor, γ . The normalized
graph Laplacian ensures that the precision matrix, Q is symmet-
ric and positive semidefinite. We treat the mean vector, µr as a
hyperparameter.

3.1.2 Product-level Weights. We also define weights for each
product,mj , as follows:

wp ∼ N(µp , Σp ) (11)

We assume the product weights have mean, µp with a struc-
tured covariance prior Σp that models product substitution effects.
Substitution effects are discussed more in Section 3.3.

3.1.3 Temporal weights. The temporal features capture the long-
term and short-term seasonality of the environment. The temporal

weights are defined similar to the product weights. Namely, the
temporal weights, wt , follow a multivariate normal distribution:

wt ∼ N(µt , Σt ), µt ∼ N(δt , Γt ), Σt = LL⊤ ∼ LKJ(σt ) (12)

We put an LKJ prior over the covariance matrix and reparameter-
ize Σt as its cholesky decomposition, LL⊤, so that the underlying
correlation matrices follows an LKJ distribution [15]. The standard
deviations, σp , follow a half-cauchy distribution. The advantage of
the LKJ prior is that it is more computationally tractable than other
covariance priors [15].

3.1.4 Autoregressive weight. Finally, we specify the weight of
previously observed revenue values on q

(t )
i j . The feature, xs is an

autoregressive feature denoting the previous k values of product-
level revenue, ρtj =

∑n
j=i pjq

(t )
i j . We assume truncated normal prior

forws , and half cauchy priors for the location, µs and scale, σs :

ws ∼ ψ (µs ,σs ,a,b) (13)

µs ∼ HalfCauchy(ϕs ) (14)

σs ∼ HalfCauchy(ψs ) (15)

We again set a = 0 and b = +∞ such that ws ∈ R+.

3.2 Hierarchical Model of Spatial Demand
One major advantage of Bayesian modeling is the natural ability
to exploit the structure inherent in many datasets for parameter
sharing [2]. Sharing parameters across groups in a hierarchical
way, can enable better learning and more predictive power. It can
also allow for discovery of more fine-grained spatial effects of
the environment. Below we present a hierarchical variant of the
environment model presented in Section 3.1.
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3.2.1 Hierarchical Region-level Weights. The key difference be-
tween the hierarchical environment model and the one presented
above lies in the definition of wr in Equation 9. Previously, we as-
sumed that the spatial effects of each region on quantity demanded,
q
(t )
i j , was homogeneous across products. The weight for product

mj=1 andmj=2 are the same, given they are both placed in region,
ri .

We also test the hypothesis that this homogeneity assumption is
too strong in Section 4. We allow for heterogeneous region weights,
wr
i j , which denotes the impact of region, ri , given product,mj , on

q
(t )
i j .

wr
i j ∼ N(wr ,Qr ), wr ∼ N(µi ,Qr ) (16)

Note that bothwr andwr
i j share the same same covariance struc-

ture: the precision matrix defined by the graph laplacian (Equation
10). Thus, the region weights are only hierarchical in their means.
Additionally, we treat the upper-level mean vector, µr as a hyper-
parameter. In Section 4 we test which environment model is more
effective at predicting revenue on a test set.

3.3 Learning Product Substitution Effects
One important challenge in the allocation problem is accurately
capturing product relationships, or substitution effects. Both theo-
retical and empirical economics demonstrates that products tend to
exhibit either complementary or supplementary effects [18, 22]. In
the case of complements, two goods "go together" if the presence
of one increases the demand for the second. For supplements, the
presence of one good decreases the demand for the other.

In order to properly learn the patterns of product substitution,
an ideal data set would consist of product co-occurences. Intuitively,
products that frequently co-occur in purchase data are likely to
be complements (e.g., peanut butter and jelly). However, many
common retail datasets, like the one described in section 4.1.1, are
aggregated and do not reveal individual transactions. Consequently,
learning substitution effects from aggregated data can be challeng-
ing.

To solve this problem, we propose to incorporate information
from both offline retail data, and publicly available online review
data. From the online data we observe product reviews within a
user. We use this information to learn general product substitution
effects, which is then used to seed the covariance matrix for the
product weights, Σp . Given a set of of users U = {u1, ...uU }, we
define our measure of product correlation:

αi j =

∑U
u=1 sisj1u (mi ,mj )√∑k

i=1 s
2
i

√∑k
i=j s

2
j

(17)

where 1u (mi ,mj ) is the indicator thatmi andmj are both reviewed
by user u, si and sj are the review scores formi andmj from user
u. If two products,mi andmj are both reviewed by user u, then we
multiply the review scores, si and sj together to get a weighted co-
occurence. We normalize the scores so that each score falls between
0 and 1. The normalization constant is the product of the square
root of the sum of rating formi andmj .

Intuitively, when two items have high scores and co-occur often,
αi j approaches 1. Conversely, for two products that never co-occur

αi j = 0. We then scaleαi j by λ to give amoremeaningful covariance
and use σi j as the off-diagonal elements of the product covariance
matrix Σp in Equation 11.

σ
p
i j = λαi j (18)

This procedure gives larger, positive covariance to products that
co-occur frequently and have high reviews in the Amazon dataset.
These will be considered complements in our environment model
PSD-sim. Moreover, products that are complements have larger,
positive impact on demand qi j .

3.4 Training
We train PSD-sim using the No U-Turn Sampler (NUTS) algorithm
[6]. This allows us to draw samples from the posterior distribution
of model weights,W, as well as the posterior predictive distribution
of quantity, q(t )i j , and revenue ρ(t ). We use Automatic Differention
Variational Inference (ADVI) [9] as an initialization point for the
sampling procedure. All models are implemented in PyMC3 [24]

We initialize with ADVI using 200,000 iterations. Once initialized
we sample the posterior using NUTS using a tuning period of 5,000
draws followed by 5,000 samples across four chains.

3.5 Feature Extraction
In order to train PSD-Sim, we extract environment-level features,
x, which is composed of temporal features, xt , region features, xr ,
product features, xp , previous sales features and xs .
• Temporal features.We use a one-hot vector denoting the day of
the week for, xt . This feature vector captures the short-term tempo-
rality commmon in physical retail settings. For example, weekends
tend to be busier shopping days than weekdays.
• Region features. We again use a one-hot vector for spatial re-
gions, xr . This feature vector ’turns on’ the weight that each region
has on quantity via the weight vector, wr .
• Product features. We use a one-hot vector to represent each
product, xp .
• Previous sales features. Finally, we construct an autoregressive
sales feature that represents the sales at time, t − 1. We use the
previous sales for product mj , summed across all regions, ws =

ρ
(t−1)
j =

∑k
i=1 pjq

(t−1)
i j . This feature captures micro-fluctuations in

demand for each product.

4 EXPERIMENTS
In the following section we first describe the dataset and discuss
interesting features of the problem. Next, we perform empirical
evaluations of PSD-sim across two large retail environments by
showing that it can more accurately predict revenue better than
more elementary baselines. We explore the model by discussing
the estimation of region weights, and show that it is robust to
previously unseen states. Finally, we do a preliminary inquiry into
effective methods for optimization.

4.1 Dataset Decription
In the following section we describe in detail our offline retail
dataset, and the online, product review dataset.
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Table 1: Retail Dataset Summary

Store Id Regions Products Train Test
#1 17 15 8/2017 - 3/2019 4/2019 - 8/2019
#2 12 15 8/2017 - 3/2019 4/2019 - 8/2019
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Figure 3: Spatiotemporal frequency table for store 1 (a) and
store 2 (b). For each product, region, day combination we
count the number of samples observed in the dataset. The
rows represent products, and the columns are region, day
pairs. The counts are normalized for each product. The
heatmaps above shed light into the size of the allocation
strategy space, and its coverage in the training data. We
can see that the number of candidate allocation strategies
is large but the historical data only explores a small subset.
Thus, we cannot directly rely on historical data to learn the
best strategy.

4.1.1 Retail Data. Our retail dataset is comprised of three pri-
mary entities: stores, products, and regions.
• Stores: We collect data from Swire Coca-Cola, a large Coca-Cola
distributor in the western United States. The data is comprised of
two large supermarket and retail stores in Salt Lake City, UT, USA.
Each store primarily sells groceries, household goods and clothing.
• Products: We observe quantities sold for a set of 15 products,
as well as each product’s average price over the year. All of the
products in our dataset are Coca-cola brand beverage products.
The product set includes items such as “Coca-Cola 8 oz - 12 pack”,
and “Sprite 2 Liter bottle”. See Figure 3 for a visualization of the
spatiotemporal frequency table of regions and products.
• Regions: The data provides daily counts of quantities at the
region-product level. Additionally, the locations of the products
are varied in product "displays". These displays are small groups
of products intended to catch the eye of the shopper. See Figure 1
for an example of a product display layout. Store 1 is comprised of
17 regions, and store 2 has 12. Each region represents a section of
the store. In general regions tend to be constructed based on the
function of each space (e.g., pharmacy, deli, etc.). We construct a
spatial graph of these regions.

4.1.2 Online Review Data. In addition to the retail dataset, we
use the publicly available Amazon 18 dataset [20] to learn prod-
uct substitution effects and structure our covariance matrix. The

Figure 4: Predictions and observed revenue during the test
period (April - August 2019). Revenue from store 1 is ag-
gregated to the store-level. We show the posterior distribu-
tion for revenue by plotting the mean (blue line) and in-
ner 95% credible interval (gray shaded area). In general, the
predicted revenue mirrors the behavior of the ground truth
data. PSD-sim correctly predicts directional changes (i.e., pos-
itive or negative) 82% of the time.

Amazon 18 dataset consists of timestamped user ratings of items,
in addition to other rich metadata. In raw form it is very large
and has over 233.1M samples across all categories and is typically
used for recommendation research. Because all of the products
in the retail data are Coca-Cola products, we filter the dataset to
three categories for our experiments: grocery and gourmet food,
prime pantry, and home and kitchen. We then match the universal
product code (UPC) of the 15 products in the retail dataset to the
Amazon Standard Identification Number (ASIN) and filter again
to the user-item interactions involving only the retail product set.
This allows us to compute pair-wise item similarities from ratings
data with equation (17).

4.2 Model Evaluation
We first evaluate the effectiveness of PSD-sim in predicting revenue
on a test dataset. Specifically, we partition the time series into a
training period from August 1, 2017 - March 31, 2019 , and a test
period of April 1, 2019 to August 31, 2019. We compare the proposed
PSD-sim to a variety of discriminitive baselines and evaluate all
models in terms of the following error metrics:

MSE =
1
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where the predicted revenue is equal to quantity times price
for the ith product, in the jth region, at time, t : ρ̂(t )i j = q̂

(t )
i j pj . To
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compare PSD-sim to the discriminitive models, we obtain a point
estimate for q̂(t )i j by computing the mean of the samples taken from
posterior predictive distribution.

Table 2: Evaluation of PSD-Sim. The best scores are presented
in bold, and the best two for each metric are underlined.

Store 1 Store 2
Model MSE MAE MAPE MSE MAE MAPE

OLS 1663.33 29.10 0.3932 2955.76 33.16 0.3546
KNN 1287.78 26.53 0.3709 2884.82 33.32 0.3361
SVR 1519.10 29.00 0.3637 3107.20 35.97 0.3446
RF 1152.65 24.33 0.3265 2631.41 31.06 0.2986

GBRT 1383.54 27.24 0.3641 2620.85 31.66 0.3133
MLP 1193.32 25.10 0.3350 2628.38 31.60 0.2962

PSD-sim 1170.68 19.39 0.3218 1331.30 19.92 0.2862

4.2.1 Baseline Approaches. The proposed PSD-sim is a gener-
ative environment model and is able to draw samples from the
full posterior distribution of revenue, ρ(t ). We also compare to the
following discriminative prediction models [23]:
• Ordinary Least Squares (OLS): Classical least squares regres-
sion that decomposes predicted quantity as a linear function of
weights: q̂(t )i j = Xw + b.
•K-nearestNeighbors (KNN): an instance-based learningmethod
than finds the closest k neighbors in the feature space and predicts
the label as the average of the nieghbor labels [25]
• Support Vector Regression (SVR): Support Vector Machines
extended to regression. We select an RBF kernel [8].
• Random Forest (RF): An ensemble regressor [25] that learns
many decisions trees and averages over the labels in each terminal
node to compute, q̂(t )i j . We use 100 trees.
• Gradient Boosted Regression Trees (GBRT): An ensemble of
regression trees recursively trained on sample residuals [25].
• Multilayer Perceptron (MLP): A simple neural network with
two hidden layers of dimensions 256, and 128 with ReLU activations,
MSE loss, and the Adam optimizer [14].

We use the same features for all baselines. The features used in
the experiment are described in Section 3.5.

4.2.2 Results. We report the results in Table 2. Additionally,
predicted and actual revenue are plotted in Figure 4. The proposed
method, PSD-sim, is overall more accurate at predicting future
states than baselines. We observe that error is minimized across
all metrics in store 2. In the case of store 1 the proposed model
offers superior performance under MAE and MAPE. In particular,
the reduction in MAE offered by PSD-sim is significant. In store 1,
we see a 20% decrease in MAE from the next best model; for store
2 we similarly see a 36% decrease. Additionally, in both stores the
average error falls within approximately $19 of the true value. It
appears that a combination of the informative priors from spatial
and product similarities, in addition to the hierarchical parameter
sharing structure, allow the model to better learn the underlying
demand.

Table 3: Ablation Study. The MSE is reported for both stores
using different model configurations. The goal is to isolate
the impact that each modeling choice has on performance.
In general, we observe that the hierarchical model compo-
nent has a large effect on model performance.

Model Spatial Substitution Store 1 Store 2

Linear ✗ ✗ 1293.03 1399.97
Linear ✗ ✓ 1294.45 1398.07
Linear ✓ ✓ 1291.77 1396.52

Hierarchical ✗ ✗ 1173.50 1335.88
Hierarchical ✗ ✓ 1171.14 1333.88
Hierarchical ✓ ✓ 1170.68 1331.30

In the case of Store 1, Random Forest does appear to offer slight
improvement over PSD-sim under MSE. However, the MAE of
PSD-sim is significantly lower than that of the RF. This seems to
suggest PSD-simmakes a handful of larger errors that are penalized
harshly by the squared error term.

Overall, PSD-sim achieves top performance in nearly all cases,
and top two in all settings. This is likely due to that fact that it is
designed specifically for the task of spatial demand prediction and
is therefore more effective than more general regression methods.

4.3 Ablation Study
In the following section we analyze PSD-sim to diagnose the ef-
fect of each modeling choice on test performance. In our ablation
study, we isolate the hierarchical component, the spatial component
and the substitution effects (e.g., product covariance) and observe
changes in test performance. Our results are reported in Table 3.

We note that the inclusion of the hierarchical component gives
the biggest boost to test performance. The reduction in error due to
the hierarchical model is between 119 an 123 for store 1, and 64-65
for store 2. Intuitively, it makes sense that different products have
varying effects on demand in different regions. Such heterogeneity
captures interactions between products and other items in their
surroundings. Additionally, store 1 has more regions than store 2.
It’s likely that as the number of regions increases, the hierarchical
model can better identify more granular signal in the data.

It is also interesting to note that the inclusion of the substitution
and spatial effects do have positive effects on performance in both
store 1 and store 2. However, these effects are more incremental
than the hierarchical model component. In sum, we consistently see
the best performance when hierarchical, substitution, and spatial
components are all used.

4.4 Environment Model Analysis
Next we provide a discussion of key features of the environment
that PSD-sim has learned. First we show a heatmap of the posterior
means of the hierarchical region weights learned in each store. We
then show that PSD-sim is robust to new states that it did not see
in the training process.

4.4.1 Analysis of region weights. Figure 4 also contains a heatmap
of the observed spatial distribution of revenue in both stores. This
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Figure 5: Two possible board state configurations and
their corresponding posterior predictive distributions. The
means are plotted as blue dotted lines and the inner 95%
credible interval as red dotted lines. Along the top (a, b) row
we show a state that was observed in the training data. The
bottom row contains a randomly generated unseen board
configuration (c, d). In both cases PSD-sim yields a posterior
distribution that is approximately Gaussian. The model be-
haves similarly for both seen and unseen states. This demon-
strates PSD-sim is robust to unseen states and is useful for
simulation.

figure suggests clear patterns related to how products are allocated
throughout the store in the observed data. We can see some similar-
ities between the summary matrices of (a) and (c), and the learned
weights of (b) and (d). For instance, within store 1 both the raw
data (a) and estimated weights (b), predict a high expected revenue
for placing product 5 in region 12. Additionally, in store 2, plac-
ing product 10 in region 3 yields a higher expected revenue in the
summary matrix (c) and the model environment (d). However, the
learned weights from the model and those from raw data are not
identical because PSD-sim also accounts for other factors such as
temporal effects.

4.4.2 Seen and unseen states. Because PSD-sim is an environ-
mentmodel intended for efficient training or exploration of a variety
of search methods, it is important to demonstrate that it is robust
to unseen states. The dataset used to train PSD-sim consists of
two stores with daily snapshots over a period of more than a year.
For just the board configuration, Zt alone, there are 2r×p possible
states. In the case of store 1, this corresponds to 2r×p ≈ 5 × 1076
possible states, and 2r×p ≈ 1.6×1063 for store 2. There is no feasible
way that in a year-and-a-half period we could observe all possible
board states.

Therefore, we need to demonstrate that PSD-sim can generalize
to new, unseen states. In Figure 5 we visualize two possible board
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(b) Store 2
Figure 6: The cumulative reward of three search algorithms
across store 1 and store 2 (in thousands of dollars). We vary
the episode length in 30 day increments (i.e., 30, 60, and 90
days in the future). The DQN algorithm is superior in all
cases. Additionally, we observe that as the episode length in-
creases so does the relative effectiveness of the DQN. The
DQN agent excels in the longer episode settings because it
is able to learn important, longer term strategies. On aver-
age, DQN offers an improvement of 27% over Tabu search in
terms of cumulative test reward.

configurations, Zt , with the corresponding model output: the pos-
terior distribution of revenue at time t, ρ̂(t ). On the top row are
the board state and posterior of an example board configuration
observed in our training data (a), along with the predicted posterior
distribution (b) of revenue. Along the bottom row, are the same
figures for a randomly generated, unseen state (c) and its predicted
posterior (d). Both states have the exact same number of product-
region pairs and all other state features are held constant (e.g., store,
day, previous sales, etc...).

In Figure 5(b) and 5(d) we also plot the mean (dotted blue line)
and 95% credible interval (dotted red line), to characterize the shape
of the distributions. For both the seen and unseen states, PSD-sim
yields a posterior predictive distribution that is well-behaved and
nearly Gaussian. The posterior mean of the observed state is approx-
imately, $3,000 and the mean of the unobserved state is just below
$4,000. The mean from the unobserved state is likely higher due to
the selection of better product-region pairs. Notwithstanding, the
shapes of the two distributions are quite similar. The width of the
95% credible interval is approximately $1,500 for both the seen and
unseen board configurations. The observation that the posteriors
for both states are very similar suggests that PSD-sim is robust to
new, unobserved states and is therefore a useful generative model
for simulation.

4.5 Optimization Techniques
In this section we perform a preliminary study into various search
algorithms to solve the optimal product allocation problem with
PSD-sim as a simulator. Because exploration and experimentation
in the physical world is costly, it is often preferable to design an
agent that can learn a policy offline before deploying into the online
environment [11].

In our experiments, the authority of the algorithm is to allocate a
set of products (e.g., Coca-Cola 12 oz) within a category (e.g., bever-
age). Used in this way, the search algorithm will select high-reward
locations for the target products. Other products may also be in a
given location, but such product selections are made independent
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of the algorithm. We have designed the experiment in this way
after consulting with industry experts at Coca-Cola. In this paper,
there are 15 products in total, but our approach can be easily be
extended to a larger set of products.

4.5.1 Search Algorithms. To this end we compare four methods
to search the problem space: 1) Random Search: A search algo-
rithm that relies on a totally random policy: at each time step, t
choose a random action; 2) Naive Search: The naive strategy in
this case is simply “do nothing." At each time step, we do not move
any products and do not deviate from the initialized allocation
policy. This baseline allows us to assess whether searching and
exploration is useful at all; 3) Tabu Search: A local neighborhood
search algorithm that maintains a memory structure called a “Tabu”
list. The “Tabu” list is comprised of recent actions to encourage ex-
ploration and avoid getting trapped in local maxima. We implement
the Tabu algorithm with a “Tabu” list of the previous 50 actions.
We treat the local neighborhood search as the enumeration over
the set of feasible actions given the current state, st ; 4) Deep Q-
Learning (DQN): A reinforcement learning algorithm that utilizes
a neural network to approximate the state-action function, Q(s,a).
The DQN typically employs an ϵ-greedy strategy for exploration.
The exploration probability, ϵ , is typically annealed throughout
training. We train our DQN using 50,000 training iterations prior
to the test period. Note that this approach can scale to a much
larger set of products with minor modifications to the Q-network
architecture [16].

4.5.2 Policy Evaluation. In this section we conduct a policy
evaluation experiment. We randomly fix the initial environment
state and allow each of the search algorithms listed above to interact
with the environment according to its corresponding strategy in a
test period of one episode. The state in store 1 is initialized with 96
product-region pairs, while the state in store 2 has 30. We record the
total reward accumulated by each agent during the entire episode.
For each store, we vary the episode length in 30 day increments: 30,
60, and 90 days in the future. This allows us to evaluate whether
longer rollouts have an effect on the policy of each agent. The
results of the policy evaluation experiment are reported in table 6.

In general, we see that DQN is themost effective search algorithm
in both stores, and across all three episode settings. In each case, it
accumulates the most total reward in the test episode. On average,
DQN is 27.3% better than Tabu, in terms of cumulative test reward.
Tabu is the second most effective search strategy, beating out the
random and naive search heuristics in all cases. Interestingly, the
naive search baseline of “do nothing” is more effective than random
searching in store 1, but not in store 2.

Additionally, it appears that as the episode length is increased,
so too does the relative effectiveness of DQN as compared to Tabu.
In the store 1, 30 day episode setting, DQN exceeds Tabu by $11k.
This difference increases to $30k for 60 days and $71k for 90 days.
In store 2 we see a similar effect. The difference between DQN
and Tabu increases from $13k to $13.5k to $17k in the 30, 60, and
90 day settings respectively. Not only is DQN more effective, but
its performance relative to other baselines gets better with longer
episodes.

DQN excels as episode length increases in large part because
the underlying Q-function is an approximation of discounted, ex-
pected reward over time. This allows the agent to potentially think
multiple steps ahead and take a set of actions that yield low im-
mediate reward, but higher reward in later steps. Conversely, the
random and Tabu search baselines are short-term or greedy search
algorithms. Especially in the case of Tabu; at each time step, an
action is solely selected based on what will maximize short-term
reward. These results suggest that the correlations between spatial
allocation and sales is complex and dynamic. Thus both of the two
baselines achieve sub-optimal policies.

It is also interesting to note the behavior of the naive search
compared to the random strategies across the two stores. In store
1, the environment is initialized with an allocation strategy that
already has many product placements (96). We see that the naive
strategy is a strong baseline, and is superior to the random policy
in each of the 30, 60 and 90 day settings. However, in store 2 where
the initial allocation is more sparse (30 placements), the random
policy is better than or equal to the naive search. This suggest that
as more products are placed it is more difficult to find incremental
improvements in the allocation strategy.

5 RELATEDWORK
There are two major streams of literature that intersect with our
problem: 1) shelf space allocation and 2) spatial demand estimation.

Shelf Space Allocation: Some classical work approaches the
shelf space allocation problem by proposing a dynamic program-
ming algorithm to allocate limited shelf space among a finite set of
products [27]. Later work proposed a simulated annealing optimiza-
tion approach that accounts for two primary decisions variables:
product assortment and allocated space for each product [4]. Addi-
tionally, Murray et al. propose an optimization algorithm whose
decision variables are product location and orientation within a
shelf [21]. More recently, frequent pattern mining algorithms have
been proposed to allocate product shelf space. Brijs et al. [13] pro-
pose the PROFSET algorithm, which is an association rule algorithm
that mines customer basket sets to identify profitable product pair-
ings. Aloysius and Binu propose a PrefixSpan algorithm for shelf
allocation that first identifies complementary categories from histor-
ical purchase data before identifying product mix strategies within
categories [1]. These existing studies all focus on micro-regions
(shelves) within the retail environment rather than macro-level
patterns across the store.

Spatial Demand Estimation: Recent studies have proposed RL
algorithms as a mechanism for spatiotemporal demand estimation.
Significant attention has been paid to the order dispatching prob-
lem in ride sharing systems. For example, Lin et al. [17] tackle the
dispatch problem by proposing a contextual multi-agent reinforce-
ment learning framework that coordinates strategies among a large
number of agents to improve driver allocation in physical space. Ad-
ditionally, Li et al. [12] also approach the order dispatching problem
with multi-agent reinforcement learning (MARL).

Recent effort to optimize traffic control systems via reinforce-
ment learning has shown encouraging results. These systems seek
to adjust traffic lights to real-time fluctuations in traffic volume
and road demand. Wei et al [26] propose IntelliLight, which is a
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phase-gated deep neural network that approximates state-action
values. More recently [10] proposes a graph attentional network to
facilitate cooperation between many traffic signals.

While these reinforcement learning methods deal with the large-
scale optimization of spatial resource, they cannot be directly ap-
plied to the product allocation problem because they all rely on
domain-specific simulators. We propose PSD-sim in an effort to ex-
tend these state-of-the-art optimization techniques to our problem.

6 CONCLUSION
In this paper, we proposed a new problem called spatial product
allocation in physical retail. The problem is motivated by the fact
that well placed products can maximize impulse buys and minimize
search costs for consumers. To solve this problem we propose a
probabilistic environment model called PSD-sim that allows for
search, simulation and exploration of new product allocation strate-
gies. We calibrate PSD-sim on real data collected from two large
retail environments. We show that PSD-sim can make both accu-
rate predictions on test data and that it is robust to unseen states.
Additionally, we do a preliminary study into various optimization
methods using PSD-sim. We discover that Deep Q-learning tech-
niques can learn a more effective policy than baselines. On average,
DQN offers an improvement of 27% over Tabu search in terms of
cumulative test reward.
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A SUPPLEMENTARY MATERIALS
A.1 Hyperparameters
To assist in reproducing our experiments, we detail the hyperparam-
eter settings used in our implementations of PSD-sim and DQN.

A.1.1 PSD-sim Priors. Below we provide the hyperparameters
of prior distributions used in our experiments:

• λ = 1.5
• µr = [0, ..0]⊤
• γ = 25
• µp = [2.5, ..2.5]⊤
• ϕs = 1
• ψs = 2.5
• δt = [5, 5, 5, 5, 10, 15, 0]⊤
• Γt = I ∗ 10
• σt = 2.5
• αq = 1
• βq = 1

A.1.2 DQN. Finally, we provide details related to training our
implementation of DQN:

• Discount factor: .2
• Learning starts: 1,500
• Batch size: 32
• Learning rate: 5e-4
• Training iterations: 50,000
• Exploration fraction: 99% annealed to 5% over the first 35%
of training iterations
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