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Abstract

Small data has been a barrier for many machine
learning tasks, especially when applied in scien-
tific domains. Fortunately, we can utilize domain
knowledge to make up the lack of data. Hence,
in this paper, we propose a hybrid model KRL
that treats domain knowledge model as a weak
learner and uses another neural net model to boost
it. We prove that KRL is guaranteed to improve
over pure domain knowledge model and pure neu-
ral net model under certain loss functions. Exten-
sive experiments have shown the superior perfor-
mance of KRL over baselines. In addition, several
case studies have explained how the domain knowl-
edge can assist the prediction.

1 Introduction

Training with small number of data samples has always been
one of the biggest challenge in machine learning. In many
scientific domains, such as physics and environmental sci-
ence [Karpatne et al., 2017bl, sharing or obtaining data is
often at a high cost. How to learn an accurate machine learn-
ing model from small data attracts many researchers.

In literature, people have tried to tackle this challenge in
two major groups of approaches. The first group is trans-
ferring knowledge from other machine learning models to
the target machine learning model. In this group, frequently
used approaches include transfer learning [Pan and Yang,
2009], multi-task learning [Ranjan ef al., 2019], and meta-
learning [Finn et al., 2017]. This group of approaches require
data from the source domain or from other tasks in order to
train machine learning models. It does not work for the case
where there is a only one task with limited training data.

Another group of methods use domain expertise to tackle
small data challenge. Frequently-used approaches include cu-
rating data representations [Khandelwal et al., 2015], chang-
ing loss functions [Karpatne et al., 2016al, and combining do-
main knowledge model with machine learning model [Ajay et
al., 2019]. These approaches do not necessarily compete with
each other and can be used at the same time.

*Partial work was done when Guanjie Zheng was at The Penn-
sylvania State University.

In this paper, we focus on how to combine domain models
with the machine learning models. We assume that there is a
known domain knowledge model y = p(x) modeling the re-
lation between features = and response variable y. We inves-
tigate this direction because from our collaborations with re-
searcher from different disciplines such as environmental sci-
ence and social science, we find that these researchers often
know some simple model based on the scientific principles
(e.g., physical laws or chemical reactions). Those domain
knowledge models capture the correlations between features
and target variable under the ideal assumptions. But the real
world often violate the ideal assumptions, though the princi-
ples stay true. The actual models are often more complicated
than the ones that domain experts have.

Different from the previously mentioned methods, we pro-
pose a surprisingly simple yet effective method to combine
domain knowledge model and machine learning model. The
key idea of our method is to treat the domain knowledge
model as a weak learner and use the machine learning model
(neural network is used) to learn the residual from the do-
main knowledge model. The idea is inspired by the boost-
ing methods [Chen and Guestrin, 2016] and residual learning
methods [He et al., 2016]. The key difference here is that our
weaker learner is not a machine learning model, but a domain
knowledge model derived by domain principles.

We further prove that the proposed hybrid model, when
choosing neural network as the machine learning model, is
guaranteed to outperform a pure neural net model and a pure
domain knowledge model. We have conducted comprehen-
sive experiments on real datasets from a variety of domains
and have shown the superior performance of the proposed
hybrid residual model. Case studies have shown how this
method can boost the performance and maintain important
domain properties. It demonstrates that our proposed hybrid
residual model can help researchers in other disciplines to
tackle their small data challenge.

2 Related Work

Combining domain knowledge model and machine
learning model has become increasingly popular re-
cently [Karpatne et al., 2017a; Wagner and Rondinelli, 2016].

The most intuitive way is to use one component to help
the other. (1) [Chapelle and Li, 2011] use massive data to



calibrate the domain knowledge model. (2) Domain knowl-
edge can also be used in data preprocessing and postprocess-
ing [Khandelwal et al., 2015]. However, these two categories
of methods need a large amount of data for calibration or
training. Hence, they do not apply to the small data prob-
lem mentioned before. In addition, they assume the domain
model to be precise, which is usually not true.

Another idea is to integrate domain knowledge and ma-
chine learning models. (1) Many domain-specific machine
learning model designs are proposed according to domain
properties [Leibo er al., 2017; Mikolov er al., 2010], e.g.,
RNN structures [Mikolov er al., 2010] for natural language
processing according to the sequential property. These meth-
ods are incorporating the specific domain properties, rather
than the domain knowledge model in our problem. (2)
Domain knowledge can also be used to guide the learning
process as model initialization [Schrodt er al., 2015], reg-
ularization, priors or constraints [Karpatne et al., 2016b;
Karpatne er al., 2016a]. These methods are usually sensi-
tive to hyperparameter settings and performance of them vary
among datasets. (3) Recently, several hybrid knowledge-data
models are proposed [Ajay et al., 2019; Jia et al., 2019], such
as using the output of one model (domain knowledge model
or machine learning model) as features to the other model
[Karpatne et al., 2017b]. Different from all the three cate-
gories of methods, we use the domain knowledge model as a
weak learner and use a machine learning model (we use neu-
ral net) to boost it. This guarantees the superior performance
of our model over either pure neural net model or domain
knowledge model. We have tested its performance on routing
problem in our earlier work [Liu et al., 2021].

Residual Learning and Boosting Our method is related
to boosting theory and residual learning theory. So we briefly
review these studies. Boosting methods [Chen and Guestrin,
2016] serve as the state-of-the-art for many applications be-
fore recent deep learning methods. The success of boosting
methods is attributed to their capability in ensembling weak
learners and reducing bias [Chawla et al., 2003]. ResNet [He
et al., 2016] is one essential advancement of deep learning.
It enables multiple paths from input to output and resolves
the gradient vanishing problem. It significantly improves the
performance of deep learning methods on supervised learning
tasks, e.g., image classification [He er al., 2016], and spatial-
temporal prediction [Liu et al., 2019]. Recent research has
explored the connection between ResNet and boosting the-
ory. [Huang et al., 2017] have demonstrated that ResNet can
be regarded as the ensemble of multiple paths from input to
output, and has shown ResNet can be learned in a boosting
way.

In contrast, we propose a hybrid framework, which incor-
porates domain knowledge in a residual learning way. The
domain knowledge model serves as the skip connection in
ResNet, or a weak learner in boosting theory. This connec-
tion guarantees the success of the proposed framework.

3 Problem Definition

Our problem definition follows typical regression and clas-
sification problem definition. Specifically, we are given a

dataset of N data points. Each data point, represented as
(xi,9:), is composed of a feature vector x; € R and a re-
sponse value y; € R (for regression) or y; € {0, 1, ..., K — 1}
(for classification). Domain knowledge model is given as
yP = p(x). Our problem can be formulated as follows:

Problem 1 (Domain-Aware-Prediction). Given a dataset
{(x1,11), (X1,¥2), ..., (Xn,yNn)}, and domain knowledge
model yP = p(x), the goal is to build a prediction model
y = F(x, p(x)), so that the defined loss is minimized.

4 Method

To tackle the aforementioned challenges of small data,
we propose a Knowledge-based Residual Learning method
(KRL). This model is composed of domain knowledge model
part and neural net part.

4.1 Combining Domain Knowledge Model and
Machine Learning Model

Here, we show two intuitive combinations of domain knowl-
edge and neural network models (as in Figure 1). Some
studies [Wilby et al., 1998] stack domain knowledge model
output to a neural network to predict the response (Figure 1
(a)). This design enables fine-tuning towards the correct scal-
ing over the domain knowledge model output. Some other
studies [Sadowski et al., 2016] preprocess the data by a neu-
ral network and feed to domain knowledge model (Figure 1
(b)). This helps de-noise the input and get better prediction
y through domain knowledge model. These designs require
the special form of the domain knowledge model, and lead to
inferior performance when domain knowledge has flaw.

e
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Figure 2: The residual learning unit of ResNet and KRL. G 4: neural
layers, p: domain knowledge model.

4.2 Residual Learning for Knowledge-Data
Hybrid Model

Inspired by the observation that domain knowledge model
can capture a rough mapping between feature and response,
we propose a residual learning method to combine domain
knowledge and neural net model. Generally, one classic
residual unit can be defined as

x' = H(x) + Gy(x) (1



where G is an arbitrary neural net, and H (x) is a skip con-
nection (e.g., a simpler neural layer). A fully-connected layer
is usually added after the final residual unit to map x’ to y.
By setting H (x) as identity mapping, we have the widely-
used form x” = x + G4(x) (as in Figure 2 (a)).

Studies have revealed two reasons that make ResNet suc-
cessful: (1) Learning the residual value y’ — y is provable
better than learning original value y when G satisfies cer-
tain criteria and output layer is linear [Shamir, 2018]. (2)
The shortcut link x creates O(2™) paths from the input to
the output when n residual layers stack together [Veit et al.,
2016]. This ensemble significantly increases its robustness
and accuracy.

Hence, we propose a simple but effective residual unit with
domain knowledge (as in Figure 2 (b))

X' = p(x) + Gy(x) @

where p(x) is the domain knowledge model, G (x) is a neu-
ral net model. Intuitively, the domain knowledge model can
predict the data reasonably well. Hence, the neural net model
will be directed to predict the residual x’ — p(x). Moreover,
theoretically, it is guaranteed to yield superior performance
over either pure domain knowledge model or pure deep learn-
ing model (shown in the next section).

4.3 Performance Guarantee

Guarantee to outperform domain knowledge model With-
out loss of generality, we can assume the final output layer as

y=w"(p(x) + Gy(x)) 3
where x is the output from the previous residual unit, w is
linear weight vector, p is the domain knowledge model and
G4 is a neural net. Further, we can re-write Eq. (3) as follows
by explicitly write out the last fully-connected layer M

y=w"(p(x) + MGy(x)) @)

Then, setting M equal to 0, the domain knowledge model is
represented as

y=w'p(x) )
Next, we will prove that the hybrid model Eq. (4) will perform
not worse than the domain knowledge model Eq. (5). Before
that, we need to incorporate the following general version
corollary from [Shamir, 2018] (this corollary can be proved
in the exactly same fashion as the Corollary 1 in [Shamir,
2018] by replacing the identity mapping with more general
version, a differentiable function H (x)).

Corollary 1. Suppose we have a function defined as

T'y(a,B) =T(a,B,¢) = Ex, [l (2T (H(x) + BGy(x)),y)]

(6)
where [ is the defined loss, a, B are weight vector and matrix
respectively, and 1) is the parameters of a neural network.
Then, every local minimum of T satisfies

I'(a,B,?) < infI'(a,0,7) @)

if the following two conditions are satisfied: (1) loss (g, y)
is twice differentiable and convex in §; (2) T'y(a,B),
vIy(a,B), and </°Ty(a,B) are Lipschitz continuous in
(a,B).

Then, we can prove the following theorem (please see sup-
plementary material for details).

Theorem 1. When using squared loss (for regression) and
exponential loss or logistic loss (for classification), every lo-
cal optimum of hybrid model y = w' (p(x) + MGy (x)) will
be not worse than domain model y = w* p(x).

Guarantee to outperform neural net model By fur-
ther building connection with boosting theory [Huang et al.,
20171, we will prove that KRL outperforms pure neural net
model. Here, we use binary classification as an example. For
the convenience of derivation, we apply exponential loss fol-
lowing the convention in the boosting theory. This derivation
can be extended to logistic loss. The derivation for regression
is left to future work.

First, we need to incorporate a corollary about AdaBoost.
When using the exponential loss function L(y, f(z)) =
exp(—yf(x)), the objective of AdaBoost algorithm can be
written as

N
(Bms Gm) = argmin 3 exp [~y (fm-1 (z:) + BG (@)

i=1
®)

where m is the index of the weak learner. Then, the following
corollary has been proved in [Hastie et al., 2009].

Corollary 2. With exponential loss function, the AdaBoost
algorithm is equivalent to forward stagewise additive model-
ing, and the classification error is guaranteed to decay when
the number of base learners increase. The objective Eq. (8)
can be achieved by solving the G,,, and [3,,, sequentially.

Thus, we can have the following corollary.

Corollary 3. Given G,,, the classifier obtained by the fol-
lowing objective is guaranteed to reduce the loss compared

with fm—1(x).
N

(Pm) = argmin Y exp [~y (o1 (@) + G (22))] (9)

i=1

Then, we can prove the following theorem (please see sup-
plementary material for details).

Theorem 2. The hybrid model y = w™ (p(x) + Gy(x)) is
guaranteed to reach a minimum not worse than the pure neu-
ral net model y = w1 G4(x).

S Experiment

5.1 Experiment Settings

Datasets. We conducted experiments on the following do-
mains, covering regression, classification and information re-
trieval (IR) problems. Details and citations of the datasets can
be found in the supplementary materials.

* Weather [Brantley et al., 2008]. This dataset documents
the soil formation and weathering process of chemicals in
soils. It contains 178 records at various depths. We use
the soil depth from the ground surface and time to predict



«

Table 1: Overall performance comparison. “-” means the method does not apply to this dataset. 1 means the higher the better and | means
the lower the better. Note that, some methods perform similar on certain datasets because of the float precision. We show the average results
of 5 runs.

Regression Classification IR
Method (RMSE)) (Accuracyt) (F11)
Weather | Radi | Pend | Spring Loan Routing
Domain | DOM 102.48 3.1 1.1 0.47 0.51 0.64
Ridge 36856 | 399 | 0.72 | 0.38 - -
Machine | XGBoost || 464.73 | 3.79 | 1.84 | 0.71 0.54 0.09
LR - - - - 0.54 0.22
learning | NN 746.19 | 293 | 0.57 0.39 0.55 0.22
ResNet 720.82 | 3.52 | 0.66 0.67 0.54 0.22
LfD 833.84 | 2.82 | 0.53 0.55 0.21
N+D 975.69 | 2.96 | 0.82 0.4 0.51 -
D+N 113.07 | 291 | 0.86 0.53 0.55 0.64
Hybrid | RF-D 10436 | 245 | 0.56 04 0.55 0.53
D-Cons 735.48 | 2.63 | 0.64 | 0.38 0.51 0.22
KRL 100.48 | 2.23 | 047 | 0.35 0.57 0.76

chemical concentrations in the soil. For the domain knowl-
edge model, a sigmoid-family analytical equation [Brantley
et al., 2008] describing the relation between chemical con-
centration and depth is utilized.

Radi [TEPCO, 2019]. This dataset has 3,371 concentra-
tion samples of multiple radiative chemical analytes in the
seawater near Fukushima Daiichi Nuclear Power Station
since the nuclear disaster. We use the time as the feature to
predict the remaining percentage of the concerned analyte.
The radioactive decay rate equation [Bucknell, 2019] (as
shown in 10) is included as the domain knowledge model.

N = Nye M (10)

Here, N and N are the analyte concentration at time ¢ and
time ¢ = 0 respectively, and A is the decay constant.

Pend [Greydanus ef al., 2019]. This dataset describes the
Hamiltonian dynamics of a pendulum system. Hamiltonian
mechanics defines coordinates (e.g., position, momentum)
to describe the system. For instance, an ideal pendulum

system can be described by the following equation [Grey-
danus et al., 2019].

l2p2
H =2mgl(1 — cosq) + — (11)

2m
Here, p, g are the coordinates (position and momentum cor-
respondingly), and H is the Hamiltonian of this system.
Additionally, m, [ represent the mass and length of the pen-
dulum respectively, and g is the gravity constant. Then,
the system dynamics (w.r.t. time) can be described by the
derivative of the coordinates. We use the coordinates to

predict the changing rate of these coordinates w.r.t. time.

Spring [Greydanus et al., 2019]. This dataset describes
the Hamiltonian dynamics of a spring system. Ideally, this
system can be described by the following formula

2

1
?—szk:q2+p—

12
2 2m’ a2

where m is the mass of the spring, and k is the spring con-
stant. Similar as in Pend, the two coordinates are used to
predict the changing rate of the defined coordinates. The
analytical equation for this spring system is used as the do-
main knowledge model.

* Routing [Moreira-Matias et al., 2013]. This dataset con-
tains 7,734 pieces of taxi trajectories in Porto, Portugal
from July 1, 2013 to June 30, 2014. We use the central
business area (with 69 intersections) of Porto to build a
weighted graph, and then use the origin, destination and
departure time information to predict the routes of the ve-
hicles (represented as a vector of 0 and 1 with each bit stand
for one road segment). This problem is similar to an infor-
mation retrieval problem. We use Dijkstra algorithm as the
domain knowledge model to find the shortest path. For spe-
cific implementation details, please refer to this work [Liu
et al., 2021] we finished earlier.

» Loan [Kaggle, 2019]. This dataset contains 233,154 ve-
hicle loan records. Each record contains features of the
borrowers (e.g., employment status, credit history), loan
amount, and whether default happened. We aim to predict
the default (0 or 1) and utilize the exponential utility func-
tion [Kirkwood, 2002] as the domain knowledge. Here,
x is a “variable that the economic decision-maker prefers
more of” [Wikipedia, 20201, and « is the constant for risk
preference.

5.2 Compared Methods

We compare with three groups of methods, domain models
(DOM), machine learning models (LR: Logistic Regression,
Ridge: Ridge Regression, XGBoost [Chen and Guestrin,
2016], NN: neural net, ResNet [He et al., 2016]) and hybrid
models as follows. By default, all neural net models are com-
posed of 3 hidden layers with 32 neurons.

o LfD [Argall er al., 2009]: Learning from demonstration.
This method first generates some data from the domain
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Figure 3: Robustness of KRL w.r.t. domain knowledge models with different levels of correctness on Pend data. For this pendulum system,
we have % = —2mglsin(q), where m = 1 (mass), g = 3 (gravity constant), = 1 (Iength of the pendulum) (as in [Greydanus et al., 2019]).
We adopt different formulas as the domain knowledge models (correct formula, partially correct formula, and wrong formula to train KRL,
and compare the trained model against NN and groundtruth data. The three columns describe the trained model at Oth epoch, 20th epoch, and

the last epoch correspondingly. .

knowledge model and train a neural net model with both
generated data and original data.

e D+N [Wilby er al., 1998]: This method feeds the output
from a domain knowledge model to a neural net. This
allows fine-tuning of the scale of the output from domain
knowledge model.

* N+4D [Sadowski et al., 2016]: This method first uses a neu-
ral net to map the raw features to the input of the domain
knowledge model. The output from the domain knowledge
model is the final prediction.

* RF-D [Wang et al., 2017] utilizes a random forest based
method to predict the discrepancy between the domain
knowledge model output and the observation.

» D-Cons [Karpatne et al., 2016b] uses domain knowledge as
a constraint (i.e., an auxiliary loss) to the main loss.

* KRL: We propose a residual learning framework to com-
bine the domain knowledge and the machine learning
model. We name the method as KRL (Knowledge-based
Residual Learning).

5.3 RQ1: Overall Prediction Accuracy

To verify the effectiveness of KRL, we conduct experiments
on multiple datasets (results shown in Table 1). As expected,
our proposed method KRL outperforms all the baselines on
all datasets. Interestingly, the Hybrid group of methods usu-
ally achieves better results than other methods. Further, de-
spite the unstable performance of other Hybrid methods, KRL
consistently performs the best.

5.4 RQ2: How the Domain Knowledge Helps

Robust mimicking from domain knowledge model. We in-
vestigate a pendulum system [Greydanus et al., 2019] with
mass m and length [, and collect the data and model fitting
results during the training process. This system is described
by Hamiltonian Dynamics, where two variables p, ¢ are de-
fined to represent the position and the momentum of the pen-
dulum respectively. Different models (KRL, NN) are built
to capture the mapping between g(position change rate) and
dp/dt(time).

When the correct domain knowledge is incorporated (first
row in Figure 3), KRL can better predict the response and
converge faster (at epoch 20). Specifically, KRL can learn the
sine function relation but NN can not (even at the last epoch).
When a partially correct formula is provided (second row in
Figure 3), KRL can still learn the correct response. Even with
a totally wrong formula (third row in Figure 3), KRL is able
to abandon the wrong formula and converge to similar re-
sults as pure data-driven model NN. Thus, KRL can utilize
the correct information in the domain knowledge model to
converge to a better result faster, and avoid mistakes in the
domain knowledge model.

Maintaining domain properties. Incorporating domain
knowledge model also enables the learned model to maintain
domain properties. Following the setting in the previous ex-
periment, we show how the Hamiltonian changes over time
in this system. The Hamiltonian of this system is supposed
to keep constant (i.e., dH/dt always equals 0) because it is
energy loss-free. As shown in Figure 4, in the results recov-
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Figure 4: Illustration of Hamiltonian of the trained model on the Pend dataset. Since there is no energy loss, the Hamiltonian should remain
constant when time evolves (i.e., the derivative of Hamiltonian w.r.t. time should equals 0). Figures (a) (b) show the histogram of the
derivative of the Hamiltonian w.r.t. time recovered by the NN and KRL correspondingly. The derivative recovered by NN can vary within a
range of -2 to 2, while the derivative recovered by KRL is within a much smaller range close to 0. In Figure (c), we let the trained model to
control the system for 200 time steps. The Hamiltonian of the system controlled by NN keeps increasing, which violates the physical laws.
In contrast, the Hamiltonian of the system controlled by KRL remains stable, close to the ideal case.

ered by NN (Figure 4 (a)) dH /dt can vary in a relatively large
range, while in the results recovered by KRL (Figure 4 (b))
dH /dt remains close to 0. In addition, when using the pre-
dicted dp/dt and dq/dt to control the system (Figure 4 (c)),
the system controlled by KRL successfully keeps the Hamil-
tonian stable though small variation is observed, while the
system controlled by NN experiences an explosion of Hamil-
tonian, which is impossible in the real world.

6 Conclusion

In this paper, we propose to solve the limited data issue for
real world problems by incorporating domain knowledge. We
propose a model KRL, and prove that the proposed model has
a guaranteed superior performance over the domain knowl-
edge model and pure neural net. Extensive experiments
are conducted and have shown the superior performance of
KRL over baselines. We have also demonstrated the domain
knowledge can help maintaining domain properties.

Our proposed model can be extended to various kinds of
problems, and incorporated in different model designs. We
believe it will be a general and essential progress in the ap-
plication of machine learning models for real world problems
where data is limited but the mechanisms are complex.
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