
ClickGraph: Web Page Embedding using Clickstream Data for
Multitask Learning

Porter Jenkins
Pennsylvania State University

prj3@psu.edu

ABSTRACT
The rise of big data frameworks has given website administrators
the ability to track user clickstream data with more detail than
ever before. These clickstreams can represent the user’s intent and
purpose in visiting the site. While existing work has explored meth-
ods for predicting future user actions, these methods are limited
focus solely on one task at a time, ignore graph structure inherent
in clickstreams, or model the conversion of the entire clickstream
session, ignoring complexities such as multiple conversions in a
single session. In this work, we formulate the novel problem of
simultaneously predicting future user actions given a user’s click-
stream history. We argue that clickstream data contains important
signal for predicting future user action. To tackle this new problem,
we propose a novel method called ClickGraph, a recurrent neural
network that encodes the graph structure of user click trajectories
in the learned representations of web pages. We conduct experi-
ments on a real-world dataset and demonstrate that this multitask
learning approach is effective at improving the prediction of form
fill conversions over strong baselines. In particular, we demonstrate
that the ClickGraph model is effective at reducing false positive
rates, increasing F1 scores, and improving recall.

KEYWORDS
Clickstreams, Recurrent neural networks, Representation learning,
Multitask learning
ACM Reference format:
Porter Jenkins. 2019. ClickGraph: Web Page Embedding using Clickstream
Data for Multitask Learning. In Proceedings of Companion Proceedings of the
2019 World Wide Web Conference, San Francisco, CA, USA, May 13–17, 2019
(WWW ’19 Companion), 5 pages.
https://doi.org/10.1145/3308560.3314198

1 INTRODUCTION
Website administrators are keenly interested in understanding the
behavior of visitors, or users, of their site. Better understanding of
website traffic typically leads to better site design, increased sales,
or improvement of other business goals. A litany of research in
recommendation systems [17][13][2] and click-through-rate predic-
tion [8] [16] relies on understanding or statistically leveraging past
user behavior. The goal of many of these algorithms is to predict
future user actions. If a program can successfully predict future user
action, it would then be able to make intervention, and presumably
drive improvement in some business outcome.

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3314198

One important data feature to consider when predicting user
actions is the clickstream. In this paper, we refer to a clickstream as a
sequence of web pages a user visits. These pages are connected by a
set of links, in a network- or graph-like structure. In many contexts,
this clickstream data captures important characteristics about the
user, and may often contain signal relevant to predicting future
action. For example, [3] hypothesizes visitors to an e-commerce
site augment their knowledge about the offered products as they
traverse the site. We adopt this view, and believe it can be used to
predict a variety of future user actions.

We extend this avenue of research and study the relationship
between clickstream behavior and form-fill conversion rate. A form-
fill is an event where the user provides information for future
marketing contact. Many companies maintain a page where traffic
from paid or organic search is directed. This page is designed to
increase interaction with potential customers and generate new
leads [5].

To the best of our knowledge, no existing work seeks to jointly
model multiple user actions in clickstream data. In this work, we
propose the novel problem of simultaneously predicting multiple
user actions (multi-task learning) given sequential browsing history
(clickstreams). Simultaneous prediction of future action allows for
a multi-dimensional understanding of future behavior, and better
informs understanding of user intent and preferences. There are
significant challenges associated with solving this problem.

(1) It is difficult to effectively model the clickstream sequence
and the relationships between different actions. For one, rep-
resenting sequences of web pages in a meaningful way is a
challenge. Many data scientists and researchers rely on naive
representations of clickstream data such as discrete counts
of site visits, number of pages clicked, session duration, aver-
age page duration, etc... [3]. Additionally, we cannot simply
treat the different actions as independent. One action likely
informs another.

(2) If independence is not a valid assumption, what is the best
way to jointly model user actions, and in turn make simulta-
neous predictions? This is a non-trivial task that has yet to
be solved in the literature.

We solve the problems in (1) and (2) by proposing a new method,
ClickGraph, that is an LSTM-based model. As a Recurrent Neural
Network (RNN), ClickGraph naturally models the variable-length,
sequential nature of clickstream data. The model simultaneously
predicts the next page the user will visit, the time duration, and
form fill conversion. In this multi-task learning approach, we model
the joint probability of actions by factoring conditional likelihoods
in a way that mirrors the user’s decision process. Additionally, we
incorporate graph structure into the loss of the next page prediction

https://doi.org/10.1145/3308560.3314198
https://doi.org/10.1145/3308560.3314198

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Porter Jenkins

task, which informs other tasks of interest, such as form fill conver-
sion. Finally, we use an embedding layer to learn representations
of web pages to avoid manual, and often ineffective extraction of
features.

We validate our proposed method against a variety of strong
baselines and demonstrate that it is more effective at predicting form
fill conversion. Conversion rates in a targeted marketing setting
are notoriously low, where the average global conversion rate is
approximately 2-3%, and the average cost (per dollar spent) to
acquire a new customer is 92 cents [3]. Therefore, even marginal
improvements in accuracy, or decreases in false negatives would
have a dramatic impact on revenue. We show that, in addition to
improving accuracy and AUC, ClickGraph is highly effective at
decreasing false negative (FN) classifications and improving recall,
two key metrics used in assessing the prediction of rare events.

In summary, the main contributions of our paper are as follows:

• We define a new problem: simultaneously predicting future
user actions from sequential, clickstream data. Simultaneous
prediction improves single tasks of high interest, such as
form fill conversion prediction

• We solve this problem by proposing a newmethod, ClickGraph,
that incorporates the graph structure of websites via a multi-
task loss function. The model learns representations of web
pages that encode this network information, and shares sta-
tistical strength across multiple user actions. These represen-
tations can be used by a machine learning model to better
understand user intent.

2 RELATEDWORK
Our problem touches on two separate literature streams, that both
fall under of the umbrella of digital marketing: click-through rate
prediction and clickstream models.

2.1 Click-through Rate Prediction Models
We discuss two related areas: sponsored search and content adver-
tising [4]. In sponsored search, the user enters a query into a search
engine and is served both organic search results, and relevant ads.
In content advertising, ads are displayed alongside original content
of a website, where the ads can either be generic or targeted to the
user [4]. Rather than predict ad click-through rates, we address the
problem of predicting future actions a user will take within a site.

Recent work focuses on learning representations of users using
neural networks in an Embedding&MLP approach [8] [13] [8] for
predicting digital ads clicks. Additionally, some approaches model
sequential data [16]

2.2 Clickstream Models
Historically, there are four common approaches to model click-
stream data of web site visitors: sequential pattern analysis, as-
sociation rules, clustering, and Markov models [7]. All of these
methods model a conversion event (click, buy, form-fill, etc.) for
an entire sequence of clickstream data for any given session. The
granular temporal information of conversion, or even decoding
multiple conversions in a single session, is unaccounted for in these
methods.

To the best of our knowledge, no work to date tries to solve the
problem of simultaneously predicting multiple user actions from
sequential clickstream data.

3 PROBLEM DEFINITION
In what follows, we formally define our problem in terms of inputs
and outputs. The input to our problem consists of three major
components, a website graph, user clickstreams, and user actions.

3.1 Inputs
Definition 3.1 (Website graph). We treat the website of interest

as a graph, G, with nodes, or webpages, P = {p1,p2,,pm } and
edges, E = {e1, e2, ..., eq }. A given web page, pi , is associated with
a set of adjacent pages, or adjacency list, Ai = {p1,p2, ...,pk }.

Definition 3.2 (User actions). Additionally, we observe a set of
n users,U = {u1,u2, ...,un }, and user actions Y = {Y1,1, ...,Yn,t }.
For each of the n users, at each timestamp, t , we observe a tuple of
actions Yit = ⟨yit ,dit ,pi,t+1⟩, where:

• yit : (Form fill) Indicator denoting whether the user requests
marketing information (fills out a form). Where, yit ∈ {0, 1}

• dit : (Duration) Time (in seconds) user ui spends on page pm .
Where dit ∈ R+

• pi,t+1 : (Next page) The future page user ui will visit at time
t + 1. Where pi,t+1 ∈ Ai

Definition 3.3 (User clickstream). Finally, we observe a set of n
clickstreams, S = {S1, S2, ..., Sn }, where Si is a sequence of web
pages and actions at time t ,

3.2 Outputs
We propose a model that takes input as described and produces
probability estimates of multiple tasks. Our primary goal is to pre-
dict future user actions. Thus, the first output is a tuple of prob-
abilities over future user actions, Ŷ = {Ŷ1,t+1, ..., Ŷn,t+f }, where
Ŷn,t+f = ⟨P(yi,t+f), P(di,t+f), P(pi,t+f +1)⟩, and f denotes the
number of future time periods predicted. As will be shown in sec-
tion 4, we do not model these actions independently, but do so
jointly mirroring the user’s decision process.

4 PROPOSED METHOD
In this section, we provide an intuitive overview of our model, and
give a very brief outline of Recurrent Neural Networks (RNN’s)
and Long Short-term Memory (LSTM) cells. We then provide a
more in-depth discussion of our proposed method, ClickGraph,
it’s architecture, and define its loss function.

4.1 ClickGraph Overview
The ClickGraph model is a recurrent neural network that takes
sequences of web pages as input and outputs probabilities of the
three potential actions described in section 3. At each time stamp,
to compute these probabilities we model the joint likelihood of
all three possible actions, P(yit ,dit ,pi,t+1). We factor this joint
probability to reflect the decision process of the user. Specifically,
the next page the user will visit is dependent on how long they
spend on the page, and whether or not they fill a form. Additionally,

ClickGraph: Web Page Embedding using Clickstream Data for Multitask LearningWWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

page duration is also conditional on form fill conversion. Finally,
form fill conversion is dependent on the hidden state learned by
the neural network. We provide a more rigorous definition in 4.3.4.

4.2 Recurrent Neural Networks and LSTM
Recurrent Neural networks are powerful deep learning models that
process sequential data. Modern networks have proven effective
in many tasks because they share weights across different parts of
the model, and across time stamps [6]. This sharing enables better
generalization and makes them more robust to examples appearing
at different time stamps.

In practice, some of the most effective RNN’s are those that
utilize Long Short-Term Memory cells [10]. The key idea behind
LSTM models is their ability to learn when to forget older states,
which in turn help them alleviate the effect of gradient vanishing.
LSTM’s are also able to effectively manage the trade-off between
long- and short-term dependencies [6].

4.3 ClickGraph Architecture
We now define the architecture of our proposedmodel, ClickGraph.

4.3.1 Input Layer. A single input to our model is a given user’s
clickstream, Si = ((pi,1, Yi,1), ..., (pi,t , Yi,t)). At each time, t , we
observe the page the user traverses to, pi , and the set of actions
taken, Yi,t . Our goal is to predict these actions, Yi,t , from pi on
unseen data. At each time, t , we input a one-hot representation of
pi,t ∈ R |P | . Note that the length of Si varies with respect to users.

4.3.2 Webpage Embedding Layer. The input pi,t is extremely
sparse and is a poor representation of relationships between pages
on the website. Pages represented as one-hot vectors all have the
same euclidean distance (

√
2) from each other inR |P | [6]. Therefore

we seek to learn a representation that encodes similarity between
pages drawing on ideas from [9][16], by learning a lower dimen-
sional page representation, ei,t ∈ Rδ , via a linear mapping:

ei,t =Wembedpi,t (1)

whereWembed ∈ Rδ×|P | is a matrix of learnable parameters.
In section 4.3.5 we define our loss function, which contains a

term for next page prediction. This term incorporates the adja-
cency matrix of the graph in the softmax denominator. Because
the weights, Wembed , are updated through propagation of errors,
optimization steps that minimize the loss function in turn encode
graph information into the embedding vectors, ei,t .

4.3.3 LSTM Layer. The web page embedding, ei,t , is fed into an
LSTM cell, which produces a hidden state at time, t . For brevity, we
refer the reader to [10][6][11] and omit the LSTM definition here.

4.3.4 Multi-task Prediction Layer. Once we have obtained the
hidden state vector ht from the LSTM cell, we feed it into the output
layer for predicting yi,t , dit , and pi,t+1. We model the joint likeli-
hood of the three user actions using the chain rule of probability:

P(yi,t ,dit ,pi,t+1) =

P(yi,t |ht)P(dit |yi,t ,ht)P(pi,t+1 |dit ,yi,t ,ht)
(2)

We then encode these conditional probabilities into the architec-
ture of the network.

Task 1: Form Fill We obtain the predicted form fill probability
from equation 3

P(yi,t |ht) = σ (Wf ormht + bf orm) (3)

Where σ (·) is the sigmoid function [6]. We then condition on
this estimate of ŷi,t , to predict P(dit) and P(pi,t+1) as in (2).

Task 2: Page Duration
To better predict our other tasks, we first embed the predicted

value for form fill into a distributed representation, γ it ∈ Rp×1.
This distributed representation eliminates the presence of a binary
component of the feature vector when predicting di,t and pi,t+1.
We let the dimensions of γ it be p =

⌊
δ
2

⌋
γ it = Ωŷit (4)

where Ω ∈ Rp×2 is a matrix of learnable parameters, and ŷit ∈
R2×1 is the vector of predicted probabilities for form fill conversion.

This embedded vector is concatenated with the hidden state vari-
able, ht , to produce a feature vector for the regression of predicted
page duration:

βt =

[
γ t
ht

]
(5)

We assume a gaussian distribution with mean, µ and unit vari-
ance for P(dit),

P(dit |yi,t ,ht) ∼ N(µ, 1) (6)

where, µ = w⊤
durationβt + bduration

We derive our predicted values for d̂i,t from the dot product of
the weight and feature vectors for page duration:

d̂i,t = w⊤
durationβt + bduration (7)

Task 3: Next Web Page
Finally, we concatenate the normalized predicted value, d̂i,t

(scalar), with the embedded predicted values for ŷi,t to obtain the
feature vector, π t , for the next page prediction task.

π t =

[
γ t
d̂i,t

]
(8)

We take the softmax of the feature vector and weight matrix
over the adjacency matrix with the softmax adjacency function:

p̂i,t+1 = so f tmaxad j (Wpaдeπ t + bpaдe) (9)

Where,

so f tmaxad j (xi) =
exi∑

k ∈Ai e
xk

(10)

andAi is the adjacency list for page, pi . This allows us to encode
graphical structure into our sequential predictive model.

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Porter Jenkins

4.3.5 Loss Function. In the following section we define the loss
function used to train ClickGraph. Our objective is to minimize
the negative log likelihood in equation 11. Additionally, we insert
the tuning parameter λ = [λ1, λ2, λ3] to control the contribution of
each task to the overall loss. Using cross-entropy loss for P(yi,t) and
P(pi,t+1), and mean squared error loss for P(dit). We add an an L2
penalty over the weights for pi,t+1, which is controlled by another
hyperparameter, α . This additional term acts as a regularizer on
the next page prediction task and is very effective at improving
generalization performance in our empirical tests.

L = −

N∑
i=1

T∑
t=1

[λ1
(
yit log P(yi,t) + (1 − yit) log(1 − P(yi,t)

)
+
λ2
2
(d̂it − di,t)

2 + λ3 log P(pi,t+1)] +
α

2
∥Wpaдe ∥

2
2

(11)

5 EXPERIMENTS
In the following section we describe the clickstream data set and
experimental settings used [14] [1]. Additionally, we empirically
evaluate our model against a variety of baselines, comparing against
multiple metrics of performance. Finally, we provide a qualitative
analysis of the embedding vectors learned by ClickGraph.

5.1 Experimental Settings
5.1.1 Dataset Description. We collect data from a large software-

as-a-service company whose primary product is a data analytics
platform. A portion of their site is targeted at prospective customers
and is comprised of content describing the function and use of their
software. We observe incoming users to this portion of the site,
their clickstream trajectory, how long they spend on each page,
and whether or not they click a form to provide contact informa-
tion for marketing purposes. For our experiments, we structure the
data in two ways. First, we maintain a tabular array of the dataset,
where each transaction (row) is treated as independent from all
other transactions. We rely on this data structure to feed data into
baselines that ignore sequential information, or treat each observed
transaction as iid. Additionally, we maintain a sequential data struc-
ture, where each sequence is indexed by a visit ID. The sequential
data is used to easily collect sequence-based mini batches for the
sequence models used in our experiments.

5.1.2 Prediction Task. We frame our prediction problem in the
context of digital marketing, as discussed above. While our method
can be generalized to learn about any future action facing a website
user, we evaluate our model on the basis of form fill prediction,
which is a binary prediction task. Form fill prediction is important
because it provides insight into the user’s intent.

We split our data into three sets: training (80%), validation (10%),
and test (10%). For models that treat the data as iid, we split our tab-
ular data structure along the rows of the design matrix. For models
where sequential information is meaningful, we split our sequence
data by randomly allocating visit id’s to the train, validation, or test
set.

5.2 Quantitative Evaluation
5.2.1 Baselines. To assess the effectiveness of our model we

compare to state-of-the-art baselines that vary both the sequen-
tial and graphical aspects of the data. This allows us to validate
our hypothesis that incorporating graph structure into a sequen-
tial model to simultaneously predict multiple variables is effective
for predicting user action. Specifically, we compare the following
methods:

• MajorityClass A naive baseline that unconditionally pre-
dicts the majority class (e.g., ŷ = 0), regardless of sequence.

• XGB (One Hot) A simple classifier with no sequence or
graph information. We use an XGBoost algorithm with a
naive, one-hot encoding of clickstreams. Each webpage is a
one-hot vector of dimension | P |. We treat each sample of
our feature matrix as iid.

• XGB (Graph) Classifier with graph information, but no se-
quential information. We train an XGBoost algorithm with
embedded vectors of clickstreams. We rely on the DeepWalk
algorithm [15] to obtain graph-based embedding vectors of
webpages. We treat each sample of our feature matrix as iid.

• LSTM (No Graph) A deep learning classifer that incorpo-
rates sequential information, but graphical information. This
model is a simpler form of ClickGraph, but only predicts
yi,t , and does not incorporate the graph structure of the
website.

• ClickGraph The proposed classifier that includes both se-
quential and graphical information.

5.2.2 Evaluation Metrics. Given that the prediction task is bi-
nary, we utilize standard binary classification metrics.

In our data, observing a form fill event is rare; approximately 2.3%
of all samples have positives labels. In the context of our problem,
a key interest is in identifying true form fill events. Because a trade-
off exists between false positives and false negatives [12], we weight
the cost of a FN as larger than that of a FP. As such, we primarily are
interested metrics such as AUC, recall, and F1. A desirable model
would have the property of successfully lowering FN’s, without
sacrificing overall effectiveness.

5.2.3 Results. We report the results form our quantitative eval-
uation in table 1. Overall, we have the following three observations.

Modeling the clickstream sequence improves performance The
results in table 1 demonstrate that, in general, discarding the se-
quential structure of the data is harmful to model performance.
Clearly, the sequence models based on recurrent neural networks
(LSTM (no graph) and ClickGraph) outperform the XGBoost
models in terms of AUC and accuracy. AUC tends to be a reliable
overall measure as it summarizes the trade-offs between precision
and recall. In the case of ClickGraph, the hidden layers are able to
learn a representation of this intent in order to better identify users
who will click "form fill."

Modeling the graph structure improves performance In our experi-
ments we test two different variants of the classic XGBoost algo-
rithm, aswell as two variants on an LSTM. In both cases, graph infor-
mation is incorporated in one, and not the other. Table 1 shows that
for the XGBoost models, XGBoost (graph) outperform XGBoost
(Naive) in terms of AUC, and accuracy. Additionally, we can make

ClickGraph: Web Page Embedding using Clickstream Data for Multitask LearningWWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

Model AUC F1 Accuracy Precision Recall FN rate
MajorityClass 0.5 0.0 0.9768 0.0 0.0 1.0
XGB (naive) 0.7989 0.2022 0.9725 0.3103 0.15 0.85
XGB (graph) 0.8592 0.0187 0.9756 0.1429 0.01 0.99

LSTM (no graph) 0.9388 0.0082 0.9812 1.0 0.0041 0.9959
ClickGraph 0.9493 0.2913 0.9829 0.6716 0.1860 0.8140

Table 1: Test set evaluation metrics for various classifiers. We observe that the proposed method, ClickGraph, outperforms all
baselines along key metrics of interest: AUC, F1, Recall, and FN rate. For all relevant metrics, we use a classification threshold
of .5

a similar observation between the LSTM-based models LSTM (no
graph) and ClickGraph. The proposed model outperforms the
more naive LSTM along a host of metrics: all but precision. While
we do see obvious tradeoffs between FP’s and FN’s when analyzing
the graph-based and graph-free models, the overall differences in
AUC gives us insight into the nature of these tradeoffs.

Simultaneously predicting different actions reduces FN’s and im-
proves recall Note that the two models that yield the best AUC
are the two recurrent neural networks, LSTM (no graph) and
ClickGraph. While the AUC and accuracy metrics between the
two are somewhat comparable, ClickGraph dramatically outper-
forms the naive LSTM in terms of F1, recall, and FN rate. This result
seems to suggest that the multi-task aspect of the model, wherein
we can encode the graph structure of the website through next page
prediction, aids in reducing false negatives.

Additionally, it is worth noting the high precision of LSTM (no
graph) as compared to ClickGraph. The perfect precision for LSTM
(no graph) occurs because it predicts only one TP and zero FP’s.
In other words, the model is extremely biased towards ŷ = 0. In
fact, it is hardly different the MajorityClass model. Conversely,
ClickGraph dramatically increases TP’s and decreases FN’s. While
it does incur more FP’s, the cost of this error is low in the context of
our problem. Additionally, overall model performance ismaintained,
demonstrated by high AUC and accuracy. As mentioned above,
these results suggest that ClickGraph is a highly desirable model
in the context of predicting form fill conversion.

6 CONCLUSION
In this paper, we studied user web behavior in a digital marketing
context. We defined the new problem of simultaneously predict-
ing multiple user actions from sequential, clickstream data. This
multi-task approach to predicting future user actions is effective at
improving prediction performance of high interest tasks, such as
such as form fill conversion. We proposed a novel method called
ClickGraph to fully utilize sequential, and graph structure in click-
stream data. This same method can easily be generalized to predict-
ing a variety of other user actions. We evaluated our method against
strong baselines on real-world clickstream data. Our experiments
demonstrate that ClickGraph is very effective at reducing false
positives, and improving recall. We hope to explore other data sets
and other settings, in particular different actions sets, for future
work.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] et al. Chantat Eksombatchai. 2018. Pixie: A System for Recommending 3+ Billion
Items to 200+ Million Users in Real-Time. WWW 2018: The 2018 Web Conference,
April 23-27, 2018, Lyon, France (2018), 10.

[3] Ram Kosuru Choudur Lakshminarayan and Meichun Hsu. 2016. Modeling Com-
plex Clickstream Data by Stochastic Models: Theory and Methods. In WWW’16
Companion, April 11–15, 2016, Montreal, Quebec, Canada. ACM, 7 Pages.

[4] Ewa Dominowska and Vanja Josifovski. 2008. First Workshop on Targeting
and Ranking for Online Advertising. In WWW’08 Companion, April 21–25, 2016
Beijing, China. ACM, 2 Pages.

[5] Optimezely Editors. 2018. Landing Page Optimization. (2018). Retrieved
November 3, 2018 from https://www.optimizely.com/optimization-glossary/
landing-page-optimization

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[7] Sule Gunduz and M. Tamer Ozsu. 2003. A Web Page Prediction Model Based
on Click-stream Tree Representation of User Behavior. In Proceedings of the 9th
ACM SIGKDD international conference on knowledge discovery and data mining.
ACM, 6 Pages.

[8] Chengru Song Ying Fan Han Zhu Xiao Ma Yanghui Yan Junqi Jin Han Li
Guorui Zhou, Xiaoqiang Zhu and Kun Gai. 2018. Deep Interest Network for Click-
through Rate Prediction. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, 10 Pages.

[9] Rami Al-Rfou Haochen Chen, Bryan Perozzi and Steven Skiena. 2018. A Tutorial
on Network Embeddings. arXiv preprint arXiv:1808.02590v1 (2018).

[10] SeppHochreiter and Jurgen Schmidhuber. 1997. Long Short-termMemory. Neural
Computation (1997), 9(8):1735–1780.

[11] Jan Koutnik Bas R. Steunebrink Klaus Greff, Rupesh K. Srivastava and Jurgen
Schmidhuber. 2015. LSTM: A Search Space Odyssey. Transactions on Neural
Networks and Learning Systems (2015).

[12] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The MIT
Press, Cambridge, Massachusetts.

[13] Jay Adams Paul Covington and Emre Sargin. 8. Deep Neural Networks for
YouTube Recommendations. In RecSys’16 September 15-19, Boston, MA, USA.
ACM, 10 Pages.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’14). ACM, New
York, NY, USA, 701–710. https://doi.org/10.1145/2623330.2623732

[16] Ruofei Zhang Zhongfei (Mark) Zhang Shuangfei Zhai, Keng-hao Chang. 2016.
DeepIntent: Learning Attentions for Online Advertising with Recurrent Neural
Networks. In Proceedings of the 22th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 10 Pages.

[17] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering
Techniques. Advances in Artificial Intelligence (2009).

https://www.tensorflow.org/
https://www.optimizely.com/optimization-glossary/landing-page-optimization
https://www.optimizely.com/optimization-glossary/landing-page-optimization
http://www.deeplearningbook.org
https://doi.org/10.1145/2623330.2623732

	Abstract
	1 Introduction
	2 Related Work
	2.1 Click-through Rate Prediction Models
	2.2 Clickstream Models

	3 Problem Definition
	3.1 Inputs
	3.2 Outputs

	4 Proposed Method
	4.1 ClickGraph Overview
	4.2 Recurrent Neural Networks and LSTM
	4.3 ClickGraph Architecture

	5 Experiments
	5.1 Experimental Settings
	5.2 Quantitative Evaluation

	6 Conclusion
	References

