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Abstract

Current neural network architectures have no mechanism for
explicitly reasoning about item trade-offs. Such trade-offs are
important for popular tasks such as recommendation. The
main idea of this work is to give neural networks inductive
biases that are inspired by economic theories. To this end, we
propose Neural Utility Functions, which directly optimize the
gradients of a neural network so that they are more consis-
tent with utility theory, a mathematical framework for mod-
eling choice among items. We demonstrate that Neural Util-
ity Functions can recover theoretical item relationships bet-
ter than vanilla neural networks, analytically show existing
neural networks are not quasi-concave and do not inherently
reason about trade-offs, and that augmenting existing mod-
els with a utility loss function improves recommendation re-
sults. The Neural Utility Functions we propose are theoreti-
cally motivated, and yield strong empirical results.

Introduction
Recommendation systems are ubiquitous in daily life and
have been built into applications for products, music, and
movies. The explicit goal of such systems is to connect users
with the items they like. Implicitly, recommendation sys-
tems seek to discover user preference relationships among
items. In recent years, many methods have been developed
to tackle this problem at scale, such as computing empirical
item-to-item similarities (Linden, Smith, and York 2003),
matrix factorization (Koren and Bell 2009; Zhang et al.
2019), and most recently deep neural networks (He et al.
2017; Chen et al. 2019; Guo et al. 2017; Zhang et al. 2019;
Hidasi et al. 2016). While many of these methods have pro-
duced strong results, they are mostly atheoretical and are
unable to reason about the economic relationships between
items.

Theoretical economics provides a useful framework for
reasoning about choice among items. In particular, utility
theory postulates that consumers have rational preferences
and that a function exists by which consumers rank items.
A consumer assigns more utility to desirable items and less
utility to undesirable ones. These utility functions have use-
ful analytical properties that shed light on the trade-offs peo-
ple make when choosing between alternatives. The theory
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also is seen in the real world. When a consumer is choosing
items at a grocery store he or she is likely to choose Coke
or Pepsi, but not both. The consumer reasons about the item
relationship and decides that the two drinks are substitutes.
Additionally, the consumer is likely reason about the com-
plementary relationship between hamburgers and buns and
purchase them together.

Typical recommender systems minimize an objective
function of either ratings or choice prediction error. This can
be viewed as a utility function since the recommendation
agent learns a function that maps item alternatives to an or-
dinal, real-value from a user’s history. Our goal in this work
is to learn a function that better mirrors a user’s internal util-
ity function and to increase his or her overall utility. How-
ever, current deep learning based recommender systems can-
not reason about the trade-offs between items (e.g. substi-
tutes and complements) because they are not quasi-concave
in their inputs. One key assumption of microeconomic the-
ory is that utility functions are quasi-concave. This property
ensures the slope of indifference curves are negative and that
proper item trade-offs occur (Nicholson and Snyder 2012).
We analytically show that a two-layer neural network is not
guaranteed to be quasi-concave, and therefore common net-
works trained to minimize error will not have the desirable
properties of theoretical utility functions.

Therefore, in this paper, we seek to integrate ideas from
microeconomics and deep learning and imbue neural net-
works with economic inductive biases, which we call Neu-
ral Utility Functions (NUFs). NUFs are capable of reasoning
about supplementary and complementary relations among
sets of items. Our hypothesis is that a network capable of
learning economic relationships is better suited for common
tasks such as recommendation. We empirically demonstrate
that Neural Utility Functions can recover theoretical sub-
stitution effects better than networks trained to only mini-
mize errors. Additionally, we show that augmenting com-
mon recommendation architectures with our proposed NUF
loss function can improve performance on the Movielens
25M and Amazon 18 datasets using both explicit and im-
plicit feedback.

In summary, the main contributions of the paper are: First,
we analytically show that neural networks are not guaran-
teed to be quasi-concave, and therefore are not guaranteed
to discover proper item relationships in data. Second, we



propose Neural Utility Functions, a novel framework for
training neural network based recommender systems by con-
straining the parameter search space to economically desir-
able optima. Third, we demonstrate that Neural Utility Func-
tions can recover theoretical item substitution effects better
than vanilla neural networks. Fourth, we conduct extensive
experiments on the Movielens 25M and Amazon 18 datasets
and show that a variety of state-of-the-art architectures can
be improved using the proposed Neural Utility framework.

Related Work
Recommendation: A great body of literature studies the
recommendation problem. Many approaches have been pro-
posed, including item-based collaborative filtering (Linden,
Smith, and York 2003), matrix factorization (Koren and Bell
2009), deep learning (He et al. 2017; Chen et al. 2019;
Guo et al. 2017; Zhang et al. 2019; Ying et al. 2018; Wang
et al. 2018b,a), and reinforcement learning (Chen et al. 2019;
Zheng et al. 2018; Zhao et al. 2018). Many current state-
of-the-art methods are based on deep neural networks in
part due to their ability to capture complex, non-linear user-
item relationships, and learn hierarchical representations of
users and items (Zhang et al. 2019). For example, (Hidasi
et al. 2016) use recurrent networks to learn item represen-
tations over time. Other work seeks to identify relationships
by building item graphs from raw text reviews (McAuley,
Pandey, and Leskovec 2015) and images (McAuley et al.
2015). Recent work seeks to integrate economic knowl-
edge for recommendation (Zhang et al. 2016; Zhao, Zhang,
and Freidman 2017). Finally, (Rendle et al. 2009) propose
Bayesian Personalized Ranking (BPR) to rank items in an
implicit feedback setting. Our work differs from these ap-
proaches in that we seek to learn economic item relation-
ships from data by constraining the gradients during the
training process and is agnostic to the choice of model ar-
chitecture. Our proposed Utility Prior can also be combined
with other loss terms such as (Rendle et al. 2009).
Random Utility Models: In empirical microeconomics, lin-
ear or hierarchical Bayesian models are used as a random
utility models for multi-class classification (Train 2003;
Howell et al. 2017; Dotson et al. 2018; McFadden 1974).
(Bentz and Merunka 2000) were among the first to use a
feedforward neural network with softmax outputs to pre-
dict consumer choices. We aim to build on these works
by proposing a neural network that explicitly reasons about
item trade-offs and can scale to very large datasets.
Gradient-constrained Optimization: Recent work has
studied directly optimizing gradients to enforce theoretical
properties while training neural nets (Greydanus, Dzamba,
and Yosinski 2019). Most existing work focuses on learning
physical laws with gradient constraints.

Theory
Recommender systems try to maximize users’ utility by
learning a function that suggests products that a user will
like. Thus, classical demand theory in economics could be
a good choice to guide the design of recommender systems.
Central to classical demand theory are the axioms of ratio-

nal choice. Preferences are assumed to be rational if they are
complete, transitive, and continuous (Mas-Colell and Whin-
ston 1995).

If a preference relation is rational then a utility function
exists that provides a transitive ranking of choices (Nichol-
son and Snyder 2012; Mas-Colell and Whinston 1995). A
utility function is a mapping from the item bundle to a real-
value, and is used for ranking choices.

The classical formulation of utility is defined in terms of
the Utility Maximization Problem (Mas-Colell and Whin-
ston 1995). We assume that a person has rational, continu-
ous, and locally non-satiated preferences. For a set of item
quantities, x = {x1, x2, ...xn}, the consumer faces the fol-
lowing UMP:

argmax
x

U(x) s.t. p>x ≤ w (1)

where U(x) is the consumer’s utility function, p is a vec-
tor of prices, and the scalar w denotes the total wealth of the
consumer. Equation (1) shows that the consumer will choose
the set of items that maximize utility and are also in the Wal-
rasian budget set, Bp,w = {x ∈ RL+ : px ≤ w} (Mas-Colell
and Whinston 1995). Economists are primarily concerned
with using mathematical programming techniques to solve
the UMP.

However, the UMP has many interesting corollaries. One
such property that is useful in many contexts is known as the
Marginal Rate of Substitution (MRS).

s(x1, x2) =
δU/δx1
δU/δx2

(2)

Equation (2) is the ratio of the derivatives of the utility func-
tion with respect to the items x1, and x2. This quantity is
a statement about the relative rates of change in utility be-
tween the two items, given a fixed level of utility. Mathemat-
ically, s(x1, x2) is the slope of the indifference curve of two
items (Nicholson and Snyder 2012). It reveals the amount of
x2 the consumer must gain in order to compensate for a one
unit loss in x1. More intuitively, s(x1, x2) sheds light on the
degree of substitutability between items. When s(x1, x2) is
large, a person is willing to substitute x1 for x2. Conversely,
as s(x1, x2) approaches 0, a person is less willing to give up
x1 for x2.

Issues with Existing Training Techniques
In general, a fundamental assumption of consumer demand
and utility theory is that a utility function, U , is continu-
ous, differentiable, and quasi-concave in its inputs (Nichol-
son and Snyder 2012; Mas-Colell and Whinston 1995). In
particular, quasi-concavity of U has two important corollar-
ies: 1) an increase in inputs increases the level of utility, but
at a diminishing rate; 2) the indifference curve of the util-
ity function is quasi-convex, and therefore a decrease in one
item is compensated for by an increase in some other item.
Mathematically, this is represented by − δU

δx1
/ δUδx2

and sug-
gests that people reason about trade-offs between items.

It is well understood that training neural networks repre-
sents a non-convex optimization problem, often with highly
irregular loss surfaces (Li et al. 2018). However, less obvious



is how a network behaves as function of its inputs. We ex-
pect that most neural networks are not concave due to use of
non-linear (or piece-wise linear) activation functions. How-
ever, to the best of our knowledge no work explicitly shows
this fact.

If a utility function, U is not quasi-concave there is no
guarantee that proper substitution effects between items will
hold. It can be shown that the probability, p, that a two-layer
neural network is not quasi-concave if p ≥ 1− ( 12 )

n, where
n is the dimension of the input feature vector. Consequently,
when this probability is high, standard training techniques
will not learn proper item relationships.
Theorem 1. A two-layer neural network U(x) is not quasi-
concave with probability, p ≥ 1− ( 12 )

n for x ≥ 0

Proof. Let U(x) for x ∈ Rn be a two-layer neural network,
with an m−dimensional hidden state, h ∈ Rm, and activa-
tion function, σ(·):

U(x) = g(f(x)), h = f(x) = σ(W1x), y = z>h (3)

Assumption 1. Assume that the weights, wii and zi all fol-
low Gaussian distributions with mean 0 and scale parameter
σ. 1 (Hanson and Burr 1990)

Lemma 1. A function f is quasi-concave if its Hessian, H,
is negative semi-definite

Lemma 2. A matrix, X, is negative-semidefinite if the scalar
u>Xu ≤ 0,∀u 6= 0

From the chain rule we can get the gradient and the Hes-
sian of U (refer to the online appendix for more details):

H =

 z1w
2
11σ
′′(w11x1) · · · znw

2
n1σ
′′(wn1x1)

...
. . .

...
z1w

2
1nσ
′′(w1nxn) · · · znw

2
nnσ

′(wnnxn)

 (4)

From the Hessian matrix, H, and lemma 2, we can show
that Theorem 1 holds.

Suppose u = [1, 0, ..., 0]>. It follows that

u>Hu = z1w
2
11σ
′′(w11x1) (5)

Note that σ′′(x) > 0 for x < 0, and σ′′(x) < 0 for x > 0.
Assume that x1 ≥ 0, then the sign of z1w2

11σ
′′(w11x1) is

strictly dependent on z1 and w11. This results holds when
the sigmoid and hyperbolic tangent functions are chosen for
σ(·) because σ′′(x) is always non-negative for x > 0 (see
online appendix for more details).

Lemma 3. The necessary conditions for H to be negative
semi-definite are ziw2

iiσ
′′(wiixi) < 0 ⇐⇒ zi and wii

share the same sign.

Due to Assumption 1, the probability thatwii and zi share
the same sign is:(
P (zi > 0)∩P (wii > 0)

)
∪
(
P (zi < 0)∩P (wii < 0)

)
=

1

2
(6)

1This assumption is grounded in empirical evidence. See cita-
tion for more discussion

for zi, wii ∼ N(0, σ2). The probability in (6) can be seen
from the cdf of the Gaussian distribution.

Lemma 2 should hold for all u 6= 0. We can repeat this
operation for all u(i) ∈ U = {u(i) = [1, 0, ..., 0]>, ...u(n) =
[0, 0, ..., 1]>} and the result should be non-positive:

n⋂
i=1

= P (ziw
2
iiσ
′′(wiixi) ≤ 0) = (

1

2
)n (7)

Because (7) must hold for all u, this implies that the proba-
bility that U is quasi-concave is less than or equal to ( 12 )

n.
Thus, it follows that the probability, p, that U is not quasi-
concave is greater than or equal to the complement: p ≥
1− ( 12 )

n.

It is interesting to note the effect of the dimensional-
ity of U . As the number of input features increases, the
probability that the network is quasi-concave approaches 0,
limn→∞

1
2

n
= 0, and p approaches 1. In high-dimensional

feature spaces we are almost guaranteed to have a function
that is not quasi-concave in its inputs.

The result in theorem 1 suggests that a typical two-layer
neural network is very unlikely to be quasi-concave. If the
network is not quasi-concave, it is not guaranteed to capture
item trade-offs. This result motivates our hypothesis that we
can improve recommendation performance through induc-
tive biases that better mimic human reasoning.

Neural Utility Functions
In empirical microeconomics and econometrics, a great deal
of previous work exists on fitting random utility functions
to data (McFadden 1974; Train 2003; Dotson et al. 2018).
However, the class of functions explored in these works is
typically restricted to linear functions. Utility functions of
this nature are not flexible enough to handle complex non-
linearities found in real-world data. In other cases, the para-
metric assumptions these models make do not scale to mod-
ern tasks such as recommendation that consist of millions of
users and items.

While deep learning architectures are usually developed
irrespective to theories about rational choice, training a rec-
ommender system can be viewed as learning each user’s util-
ity function from data. In general, the primary goal of the
recommendation agent is to minimize prediction error over
users and items. Assuming rational preferences, error is min-
imized when expected utility is maximized. Additionally, in
ratings-based recommendation the rating is an ordinal mea-
surement of item quality akin to traditional models of util-
ity. Users are assumed to choose items with higher ratings,
or higher estimated utility. While classical approaches typi-
cally assume linear models to learn part-worth item utilities
(Train 2003), a neural network maximizes expected utility
by learning abstract representations of items and users.

Given a user ui and an item vj , a typical recommender is
trained to minimize ratings prediction error:

min
θ
Lr =

∑
(ui,vj)∈R

(rij − r̂ij)2 (8)



While many network architectures have shown good empir-
ical results, non-linear models trained to minimize (8) alone
cannot explicitly reason about item trade-offs, which are
central to how people make decisions and can impact tasks
such as recommendation.

In this paper, we attempt to bridge this gap. We propose a
cost function that accounts for item trade-offs by imposing
novel priors (equation 9). In doing so, we endow our model
with the capacity to reason about item relationships and sub-
stitution effects, and the ability to learn rich item represen-
tations. Our core hypothesis is that a model that can better
understand item relationships, can provide better recommen-
dations and make better decisions.

Constructing Complement and Supplement Sets
In order to learn these item relationships, We first sample a
set of complementary, and supplementary items. Given a set
of users U = {ui : 0 < i <= m} we can sample a comple-
ment set, x(i)c = {cj : 0 < j <= k}, and a supplement set,
x
(i)
s = {sj : 0 < j <= k}.
For each sample, xi, (e.g., user/item pair) we construct

x
(i)
c and x(i)s . We assume that if a user, ui, chooses two items

they have some degree of complementary. This assumption
is grounded in the economic notion that the presence of good
A will increase the demand for good B if they are comple-
ments (Nicholson and Snyder 2012). For each xi we con-
struct x(i)c by uniformly sampling k items that the user also
chose2. Likewise, we construct x(i)s by sampling k items the
user did not choose. This assumption is valid from Hicks’
second law of demand: all non-complementary goods can be
considered substitutes from (Nicholson and Snyder 2012).
The virtue of this straightforward procedure is that it is gen-
eral and can be used with any recommendation data set. We
acknowledge that other sampling schemes could be used if
more information is present in the data. For example, if more
information is available these sets could be produced follow-
ing (McAuley, Pandey, and Leskovec 2015).

Neural Utility Loss
In order to constrain the parameter search of the neural
network to points that better mirror the behavior of quasi-
concave utility functions, we propose the Utility Prior in
equation 9:

Lutility =

∥∥∥∥∥δL/δxi∇
x
(i)
c
L

∥∥∥∥∥
2

− log

∥∥∥∥∥δL/δxi∇
x
(i)
s
L

∥∥∥∥∥
2

(9)

The equation in (9) is reflective of the theoretical result in
(2) and induces the network to learn economic relationships
(see online supplement). The ratio of the derivatives of two
items expresses the degree of substitutability, or trade-off,
between the two items. The first term minimizes the norm of
the gradient ratio between a sample xi and its complements.
The second term has the effect of maximizing the norm of

2For the ratings prediction task, we sample items that the user
also rated
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Figure 1: The training procedure for Neural Utility Func-
tions has three main steps: 1) for each sample, xi, a com-
plement set, x(i)c , and a supplement set, x(i)s , are constructed
and fed into the network, U; 2) we do a forward pass through
the recommender model (e.g., neural network), compute the
prediction loss, and the in-graph gradients with respect to
the inputs; 3) we compute the Neural Utility Loss in (9) and
backpropogate.

the gradient ratio of the sample and its supplement set. Be-
cause we are maximizing the norm of the second term, we
find that in practice it is useful to take the log to ensure the
optimization procedure does not push the second term to-
wards infinity. A log on the first term is not necessary be-
cause it is bounded from below by zero. We also experi-
mented with a max margin rectifer (Jean et al. 2019), which
will maximize the second term up to a margin, µ, but found
that the formulation with a log term had fewer hyperparam-
eters and was easier to train.

We combine the Utility Prior in (9) with the standard pre-
diction loss to get the proposed NUF loss:

LNUF = λLutility + L(y, ŷ) (10)
We optimize (10) to train our network. The term, L(y, ŷ),

represents the prediction loss between y and ŷ. Without loss
of generality, any common prediction loss function can be
used for L(y, ŷ) (e.g., mean squared error, binary cross en-
tropy, cross entropy). In our experiments we use both mean
squared error and binary cross entropy. The strength of the
contribution of the neural utility loss term is controlled by
the hyperparameter lambda.

The resulting function learned by the neural network is
still not guaranteed to be quasi-concave; however, due to
the informative constraints imposed in the loss (equation 9),
it does learn some of the same properties characteristic of
quasi-concave utility functions (equation 2), namely, substi-
tution effects and item trade-offs.

Training Procedure
One virtue of the proposed approach is that it is agnostic
to network architecture. Any existing backbone model can
be used in conjunction with (10). The training procedure is
therefore straightforward and can be implemented with ex-
isting models. There are three main ingredients in our train-
ing procedure (see Figure 1). First, we collect samples using



the sampling routine in the previous section. We feed each
sample, complement set and supplement set into the param-
eterized neural network, ŷi = Uθ(xi, x

(i)
c , x

(i)
s ). The out-

put ŷi can be any arbitrary regression or classification output
(e.g., real number, binary class label, multi-class label). Sec-
ond, we compute the loss of the prediction error, L(y, ŷ),
and backpropagate. This provides an in-graph gradient of
L(y, ŷ) with respect to the inputs, xi, xc, and xs. Third, us-
ing the input gradients and the prediction loss, we compute
the utility loss function (equation 10) and update the network
weights. The procedure is depicted in Figure 1.

Experiments
In the following section, we discuss our empirical results
using Neural Utility Functions 3. First, we theoretically vali-
date our proposed approach by recovering known, analytical
substitution effects from data. Second, we perform recom-
mendation tasks with both explicit and implicit feedback.
Finally, we explore the learned item representations from a
shallow Neural Utility Function.

Recovering Theoretical Substitution Effects
In this experiment our goal is to demonstrate that Neural
Utility Functions can effectively recover theoretical item
substitution effects better than networks trained to only min-
imize prediction loss. We can directly test this hypothesis by
comparing the substitution effects learned from data to those
from theoretical models of utility.

CES and Cobb-Douglas utility are two common and well-
studied functions due their analytical tractability. Thus, we
adopt these two functions to simulate ratings data and see
how well different networks recover known, theoretical sub-
stitution effects. We first briefly introduce these two utility
functions; more details can be found in the online supple-
ment.

Cobb-Douglas Utility: The Cobb-Douglas utility
function directly models trade-offs between m items,
x1, x2, ...xm, by means of the weights, w1, w2, ...wm. The
weight wi denotes the marginal utility, or relative impor-
tance, of item i. Cobb-Douglas Utility and substitution
effect are:

U(x) =
m∏
i=1

xwii , sU (xi, xj) =
wixj
wjxi

. (11)

CES Utility: CES utility is also very common in con-
sumer demand theory. The functional of form of CES utility
and theoretical substitution effect are:

U(x) =
[ m∑
i=1

wix
ρ
i

] 1
ρ

, sU (xi, xj) =
wi
wi

(
xi
xj

)ρ−1
(12)

See the online supplement for more details and deriva-
tions. For each of these theoretical functions, we fix the num-
ber of items, users, theoretical parameters, and simulate rat-
ings data. The utility function weight vector is drawn from

3For code see https://github.com/porterjenkins/neural-utility-
functions

a uniform distribution and normalized, w ∼ unif(0, 10),
w = w/

∑m
i=1 wi. These parameters are held out from the

models during training. For each user, we randomly select
50% of the possible items for rating. Each item is input into
U(x) to get a scalar rating value. We perturb each rating with
a small amount Gaussian noise to reflect more real-world
settings. We fix the number of users at 100, and perform the
experiment under three settings, where the number of items,
m = 64,m = 256, and m = 1024.

We train two shallow networks ten times, each with one
item embedding layer with a hidden dimension size of 256,
and a single output weight layer. The first network (Baseline
Neural Net) is trained to minimize the prediction error of
ratings (i.e., mean-squared error loss). The second network
(Neural Utility Function) is trained using the loss function
in equation (10). We compute the learned pair-wise sub-
stitution values ŝ(xi, xj) for each model (equation 2) and
compare them to the theoretical quantity sU (xi, xj). Finally,
we compute the mean-squared error between ŝ(xi, xj) and
sU (xi, xj) and perform a t-test on the difference of means
to estimate statistical significance.

Results The results in Table 1 suggest that the Neural Util-
ity Function is much more effective at capturing substitution
effects and item trade-offs than the Baseline Neural Net. In
both the Cobb-Douglas and CES cases, the proposed loss
function reduces the error between learned and true substi-
tution effect and is also statistically significant. Addition-
ally, when the number of items,m, increases the substitution
rates are generally more difficult to estimate and the errors
increase. This likely occurs because the partial derivatives
become more difficult to disentangle with a small dataset.
However, the Neural Utility Function is more robust to ad-
ditional items than the Baseline Neural Net. Overall, the re-
sults in Table 1 validate our hypothesis that NUFs can better
learn economic relationships.

Recommendation Performance
We also evaluate recommendation performance on the
Movielens 25M (Harper and Konstan 2015) and Amazon
18 (McAuley et al. 2015) datasets. Dataset summary statis-
tics are reported in Table ??. Both datasets provide times-
tamped user ratings of items. We filter the full Amazon
dataset (233.1M samples) to three categories for our exper-
iments: grocery and gourmet food, prime pantry, and home
and kitchen.

Experimental Settings Explicit Task: We take 20% of
each dataset for testing and the rest for training. In order to
make inference for each user, we do a stratified random split.
Meaning that for each user, 80% of the samples are allocated
for training and 20% for testing. The target variable is the
item rating, y ∈ [1, 5]. Here the baseline prediction loss is
mean-squared error loss.

Implicit Task: In order to test how Neural Utility Func-
tions perform on ratings-free data, we transform each rating
to 0 or 1 denoting if the user has interacted with an item
as is done in the literature (He et al. 2017). We split our data
into train and test partitions with the following procedure: 1)
For each user, we leave out the last item interaction and use



Cobb-Douglas CES

Predictive Model m=64 m = 256 m=1024 m=64 m=256 m=1024

Baseline NN 4.73 20.89 171.92 9.34 31.00 287.77
NUF 2.91∗∗ 7.08∗∗ 132.40∗∗ 4.76∗∗ 6.94∗∗ 124.81∗

Table 1: Mean-squared error between the learned and theoretical substitution effects. The stars indicate the significance level
(∗∗: α = .05, ∗ : α = .10). In both the Cobb-Douglas and CES case, the Neural Utility Function is more effective at recovering
ground truth substitution effects and is statistically significant.

EXPLICIT IMPLICIT

Movielens Amazon 18 Movielens Amazon 18

Model Objective RMSE DCG@5 RMSE DCG@5 HR@5 NDCG@5 HR@5 NDCG@5

MF Prediction 2.694 9.145 3.050 19.348 0.424 0.318 0.516 0.354
NUF 1.817∗ 9.953∗∗ 3.147 19.403∗∗ 0.698∗∗ 0.562∗∗ 0.554∗∗ 0.395

W&D Prediction 0.953 10.816 1.109 19.514 0.891 0.729 0.700 0.526
NUF 0.945∗∗ 10.930∗∗ 1.078∗∗ 19.608∗∗ 0.916∗∗ 0.734 0.786∗∗ 0.610∗∗

NCF Prediction 1.059 9.236 1.123 19.409 0.888 0.728 0.710 0.529
NUF 0.978∗∗ 10.655∗∗ 1.094∗∗ 19.573∗ 0.914∗∗ 0.743∗∗ 0.772∗∗ 0.603∗∗

DFM Prediction 1.013 10.429 1.166 19.415 0.402 0.289 0.676 0.443
NUF 1.010 10.732∗ 1.130 19.471 0.854∗∗ 0.804∗∗ 0.855∗∗ 0.711∗∗

Table 2: Recommendation results for both the explicit and implicit tasks. We train four network architectures under both
prediction loss and the NUF objective. Stars indicate the significance level (∗∗: α = .05, ∗ : α = .10)

Dataset Interactions Users Items

Movielens 25M 25M 162,541 59,047
Amazon 18 8.18M 836,292 235,462

Table 3: Dataset Summary

the remaining samples as training data; 2) randomly choose
k items that the user did not interact with; 3) combine the
leave-one-out sample with the negative samples to get the
test set. We choose k = 50 in our experiments. In the im-
plicit feedback case, the baseline prediction loss is binary
cross-entropy loss.

Training: We train all models using the Adam optimizer
(Kingma and Lei Ba 2014). We select k = 5 for the size
of the complement and supplement sets. All models were
implemented in Pytorch (Paszke et al. 2019) and trained on
a Google Deep Learning VM with 60 GB of RAM and two
Tesla K80 GPU’s. We train each model multiple times to
estimate the variance. See the supplementary materials for
more training details.

Evaluation Measures We evaluate models trained in the
explicit task using root mean-squared error (RMSE) and dis-
counted cumulative gain (DCG@5). At test time we get a
truncated, ranked list of item scores (top 5) and compute
the RMSE and DCG. RMSE measures accuracy of ratings,
while DCG is a measurement that judges the quality of their
ranking. We do not normalize the DCG in the explicit feed-
back experiments because it requires us to compute the ideal
DCG (IDCG), which is difficult to compute since each user

does not rate each item.
In the implicit case we evaluate all models using the hit

ratio (HR@5) and the normalized discounted cumulative
gain (NDCG@5). We again get a truncated ranked list of all
candidate items for each user and compute the HR@5 and
NDCG@5. The hit ratio judges the frequency with which
the ground truth test item was present in the top k items,
while the NDCG accounts for its position in the list (He et al.
2017). We perform a permutation test (Good 2005) to esti-
mate statistical significance (see supplement).

Baselines Our hypothesis is that training a network with
the cost function described in (10) facilitates reasoning
about item trade-offs and should therefore improve recom-
mendation performance. We have designed our framework
to be agnostic to the choice of the model “backbone”. In
our experiments, we train a variety of models under two set-
tings: 1) we train each model with a standard prediction loss
(e.g., MSE, binary cross-entropy); 2) we train each model
with Neural Utility loss. We analyze the performance of
the following models. 1) Matrix Factorization A widely
used recommendation method that factorizes the user-item
matrix into two latent, low-rank matrices (Koren and Bell
2009). 2) Wide & Deep A popular architecture that uses
both wide and deep features and concatenates them at the
output layer (Cheng et al. 2016). 3) Neural Collabora-
tive Filtering (NCF) A deep learning approach for mod-
eling user-item interactions. We use the form that leverages
a multi-layer perceptron to learn the interactions (He et al.
2017). 4) Deep Factorization Machines (DFM) A power-
ful model that combines deep learning and factorization ma-



Movielens Amazon 18

Model Objective HR@5 NDCG@5 HR@5 NDCG@5

MF

BCE 0.424 0.318 0.516 0.354
BCE + Utility 0.698∗∗ 0.562∗∗ 0.554∗∗ 0.395

BPR 0.449 0.337 0.504 0.337
BPR + Utility 0.532∗∗ 0.395∗∗ 0.520∗∗ 0.340∗

W&D

BCE 0.891 0.729 0.700 0.526
BCE + Utility 0.916∗∗ 0.734 0.786∗∗ 0.610∗∗

BPR 0.901 0.736 0.728 0.563
BPR + Utility 0.915∗∗ 0.746∗∗ 0.771∗∗ 0.599∗∗

NCF

BCE 0.888 0.728 0.710 0.529
BCE + Utility 0.914∗∗ 0.743∗∗ 0.772∗∗ 0.603∗∗

BPR 0.898 0.729 0.729 0.565
BPR + Utility 0.915∗∗ 0.830∗∗ 0.773∗∗ 0.601∗∗

DFM

BCE 0.402 0.289 0.676 0.443
BCE + Utility 0.854∗∗ 0.804∗∗ 0.855∗∗ 0.711∗∗

BPR 0.986 0.955 0.975 0.926
BPR + Utility 0.998 0.973 0.991∗∗ 0.955∗∗

Table 4: A comparison of NUFs with different base loss
functions for the implicit task. In all cases, the theoretical
information in the Utility Prior increases performance.

chines to learn low- and high-order feature interactions (Guo
et al. 2017).

Results The results from our recommendation experi-
ments are reported in Table 2. We train each backbone archi-
tecture with and without Neural Utility loss. In all cases we
see that the performance of a given model can be improved
by training with the NUF loss function proposed in equation
(10). In 81% of cases the performance boost in statistically
significant.

Neural Utility Functions and Pairwise Loss
In Table 4 we demonstrate how NUFs can be combined
with arbitrary loss functions. Bayesian Personalized Rank-
ing (BPR) (Rendle et al. 2009) is a common approach to
the recommendation problem and relies on a pairwise loss
function that learns to rank by maximizing the similarity of
items that co-occur within users. We perform the implicit
task described in the previous section using Binary Cross
Entropy (BCE) and BPR loss for L(y, ŷ) in Equation (10).
By comparing to BPR we can control for the added infor-
mation available in the complement and supplement sets.
Generally, BPR loss improves upon BCE. For both BPR and
BCE as a base loss, the NUF extracts more information from
the data via the Utility Prior, and boosts performance. This
result confirms that the theoretical information in the NUF
is causing an increase in performance.

Item Analogies
Finally, to explore what item relationships a NUF is ca-
pable of discovering, we perform an “item analogy” case
study of the learned item embeddings. Word analogy exer-

cises are common in the natural language processing litera-
ture (Mikolov et al. 2013) and are useful for diagnosing the
semantics uncovered by a model. We train a shallow net-
work on the Amazon 18 dataset using NUF loss. Our model
has an item embedding layer and a single output layer. Each
item in our dataset is represented as a 512 dimensional vec-
tor. We average over very similar items to deduplicate the
item vectors (e.g., two peanut butter brands are aggregated to
Peanut Butter). Results are reported in Table 6. We ob-
serve that the NUF is able to uncover complementary analo-
gies such as “Coffee is to Creamer as Pizza is to Cheddar”
“Biscuits are to Gravy as French Toast is to Pancakes.” Ad-
ditionally, the network encodes supplementary relationships
such as “Sugar is to Sea Salt as Honey is to Jerky.” These ex-
amples demonstrate that a Neural Utility Function is capable
of learning meaningful item semantics.

Analogy Result

Coffee - Creamer + Pizza ≈ Cheddar
Biscuits - Gravy + Coffee ≈ Almond Milk
Biscuits - Gravy + French Toast ≈ Pancakes
Sugar - Sea Salt + Honey ≈ Jerky
Sugar - Sea Salt + Egg ≈ Pastry

Table 5: Example item analogies using deduplicated item
vectors and their corresponding euclidean distance. We also
compare analogies between the NUF and base loss (see on-
line supplement); the results indicate the NUF discovers bet-
ter item semantics.

Conclusion
Motivated by theoretical economics, we proposed Neural
Utility Functions, a framework for training neural network
based recommender systems that can encourage the model
to reason about item trade-offs. Specifically, the objective
function we proposed constrains the ratio of item gradients
to discover richer item relationships and economically favor-
able optima. We demonstrate that training a recommender
system with NUFs can provide superior performance over
multiple datasets and tasks.
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A1. Theorem 1
Hessian of Utility Function, U
Let U(x) for x ∈ Rn be a two-layer neural network, with
an m−dimensional hidden state, h ∈ Rm, and activation
function, σ(·):

U(x) = g(f(x)), h = f(x) = σ(W1x), y = z>h
(13)

By the chain rule we have: dydx = dy
dh ×

dh
dx . Differentiating

y with respect to the hidden state h, we have, dydh = z> =
[z1, z2, ...zm]. Differentiating the vector h with respect to x
gives the matrix:

dh

dx
=

w11σ
′(w11x1) · · · w1nσ

′(w1nxn)
...

. . .
...

wn1σ
′(wn1x1) · · · wnnσ

′(wnnxn)

 (14)

Multiplying dy
dh ×

dh
dx , it follows that the gradient of U is:

∇x =


z1w11σ

′(w11x1) + · · ·+ znwn1σ
′(wn1x1)

z1w12σ
′(w12x1) + · · ·+ znwn2σ

′(wn2x2)
...

z1w12σ
′(w12x1) + · · ·+ znwnnσ

′(wnnxn)


(15)

Finally, we can compute the Hessian by taking the cross-
partial derivatives of∇x:

H =

 z1w
2
11σ
′′(w11x1) · · · znw

2
n1σ
′′(wn1x1)

...
. . .

...
z1w

2
1nσ
′′(w1nxn) · · · znw

2
nnσ

′(wnnxn)


(16)

Second-derivatives of activation functions Sigmoid:
The sigmoid function is given by:

σ(x) =
ex

ex + 1
(17)

Note the curvature of σ(x) on the x-y plane behaves in a
way such that it is concave down for x > 0 and concave up
for x < 0. This implies that the second derivative of σ(x) is
positive for x < 0 and is negative for x > 0.

This can be verified by computing the second order
derivative of σ(x), which gives:

σ′′(x) =
−ex(ex − 1)

(ex + 1)3
(18)

This function behaves such that σ′′(x) < 0 for x > 0.
The opposite holds true, such that σ′′(x) > 0 for x < 0.

Hyperbolic Tangent: Note that the tanh(x) has similar
curvature to σ(x) on the x-y plane. This implies that its sec-
ond derivative of the hyperbolic tangent has similar prop-
erties as σ′′(x). Computing the second order derivative of
f(x) = tanh(x) yields:

f ′′(x) = −2tanh(x)sech2(x) (19)

Like σ(x), f(x) maintains the property that f ′′(x) and x
are inversely related, meaning that f ′′(x) > 0 for x < 0 and
f ′′(x) < 0 for x > 0.

A2. Derivation of theoretical substitution
effects

In this section we derive the theoretical substitution effects
of both the Cobb-Douglas and CES utility functions. These
quantities are used to compare learned to analytical substi-
tution effects in Table 1.

Cobb-Douglas Utility

U(x) =
m∏
i=1

xwii = xw1
1 xw2

2 ...xwmm (20)

δU

δxi
= xw1

1 ...x
wi−1

i−1 (wi)x
wi−1
i x

wi+1

i+1 ...xwmm (21)

s(xi, xj) =
δU
δxi
δU
δxj

=
xw1
1 ...x

wi−1

i−1 (wi)x
wi−1
i x

wi+1

i+1 ...xwmm

xw1
1 ...x

wj−1

j−1 (wj)x
wj−1
j x

wj+1

j+1 ...x
wm
m

=
(wi)x

wi−1
i x

wj
j

(wj)x
wj−1
j xwii

=
wixj
wjxi

(22)

CES Utility

U(x) =
[ m∑
i=1

wix
ρ
i

] 1
ρ

(23)

δU

δxi
= (w1x

ρ
1 + ...+ wnx

ρ
n)

1/ρ−1 · wixρ−1i (24)

s(xi, xj) =
(w1x

ρ
1 + ...+ wnx

ρ
n)

1/ρ−1 · wixρ−1i

(w1x
ρ
1 + ...+ wnx

ρ
n)1/ρ−1 · wjxρ−1j

=
wix

ρ−1
i

wjx
ρ−1
j

=
wi
wi

(
xi
xj

)ρ−1 (25)

Typically, the weights are chosen such that
∑n
i=1 wi = 1,

which we do in our experiment. Note that in both cases sU (·)
is dependent on the ratio of the amount of the two items.
In our recommendation experiment, we are testing whether
the simple co-occurence of two items exhibits a substitution
effect, so we set x1 = 1 and x2 = 1. This simplifies the
equations in (22) and (25) to be a function of the ratio of
item weights.



Analogy NUF Baseline NN

Coffee− Creamer+ Pizza ≈ Cheddar Sofrito Sauce
Biscuits− Gravy+ Coffee ≈ Almond Milk Coffee Pods
Biscuits− Gravy+ French Toast ≈ Pancakes Flour
Sugar− Sea Salt+ Honey ≈ Jerky Coconut Water
Sugar− Sea Salt+ Egg ≈ Pastry Dips and Salsa

Table 6: Example item analogies for both the NUF and a baseline NN using deduplicated item vectors and their corresponding
euclidean distance. The results indicate the NUF discovers better item semantics.

A3. Training Details for Recommendation
Experiment

We train all models using the Adam optimizer (Kingma and
Lei Ba 2014). We typically select a learning rate between
in [1e−6, 1e−5]. We select k = 5 for the size of the com-
plement and supplement sets described in Section 4.1. All
models were implemented in Pytorch (Paszke et al. 2019)
and trained on a Google Deep Learning VM with 60 GB of
RAM and two Tesla K80 GPU’s.

We evaluate models trained in the explicit task using
root mean-squared error (RMSE) and discounted cumula-
tive gain (DCG@5). At test time we get a truncated, ranked
list of item scores (top 5) and compute the RMSE and DCG.
RMSE measures accuracy of ratings, while DCG is a mea-
surement that judges the quality of their ranking.

In the implicit case we evaluate all models using the hit
ratio (HR@5) and the normalized discounted cumulative
gain (NDCG@5). We again get a truncated ranked list of all
candidate items for each user and compute the HR@5 and
NDCG@5. The hit ratio judges the frequency with which
the ground truth test item was present in the top k items,
while the NDCG accounts for its position in the list (He et al.
2017).

In general, we find that Neural Utility functions are fairly
robust to hyperparameter settings such as λ or the learning
rate, η. In nearly all cases, for the explicit task choosing λ =
.1 and η = 1e−5 produced good results with little tuning.
Additionally, for the implicit task, we typically selected a λ
value in the interval [.2, .5] with a learning rate of η = 1e−5.
We enforce an early stopping criterion, ε < 1e−3 for the
explicit task, and ε < 1e−6 for the implicit task.

However, we observed that different settings were re-
quired while training our implementation of Matrix Factor-
ization (MF). In general, the model took longer to converge
and required much smaller values of λ. For the explicit task,
we set λ = 1e−3; for the implicit task we selected λ = 1e−4.
Additionally, due to issues of slow convergence, we found
that selecting a larger learning rate (η = 1e−3) was usually
necessary.

Finally, in all cases we found that training for a maximum
of 100,000 produced satisfactory results in our experiments.

Tests of Significance for Recommendation
Experiments
In this section, we provide a discussion of the methods used
to estimate statistical significance of Tables 1, 2 and 4. The

primary goal of these estimates is to asses how meaningful
the results recorded are, as well as rule out the possibility
that the results are a function of randomness in the training
or parameter initialization.

In Table 1 we compare learned to analytically derived sub-
stitution effects. Because the experiment in this section uses
a relatively small, synthetic data set we are able to train each
model 10 times. We then perform two sided t-test on the
difference of means between the Baseline NN and the NUF
(e.g., NUF - Baseline NN). We compute the mean and vari-
ance of each estimate to obtain the t-stat and correspond-
ing p-value. Two stars (∗∗) denotes a significance level of
α = .05, and one star (∗) refers to a significance level of
α = .1

In our recommendation experiments with real data (Table
2, 4), the models take much longer to train. Consequently,
we train each model setting three times to obtain an estimate
of both the mean and variance. For each training run, we
initialize the parameters from a different random point. In
Tables 2 and 4, we perform a two-sided difference of means
Permutation Test (Good 2005) (i.e., NUF - Prediction loss)
on the sample evaluation metrics for each model setting. The
advantage of the permutation test is that it does not make
distributional assumptions about the data and is useful when
the number of samples is low. We compute 1,000 different
permutations of the observed result and compute a p-value.
Again, two stars (∗∗) denotes a significance level of α = .05,
and one star (∗) refers to a significance level of α = .1. In
both tables, the metrics reported are the means over training
runs.

A4. Item Analogies
We also perform the item analogies experiment with a base-
line neural net (baseline NN) as a reference point. The re-
sults are reported in Table 6. We can see that the NUF dis-
covers more meaningful semantics among items. For exam-
ple, ”Coffee is to Creamer as Pizza is to Cheddar” is clearly
a better complementary relationship than ”Sofrito Sauce.”
In most cases the analogies produced by the baseline NN do
not make much intuitive sense. We further conclude that the
NUF is indeed learning item relationships.

A5. Parameter Analysis on Lambda
In this section we perform a hyperparameter sensitivity anal-
ysis of λ, which controls the contribution of the item gradi-
ent norms to the overall loss. The evaluation metrics as a
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Figure 2: Results from the hyperparameter sensitivity study
(best viewed in color). We perform a grid search on the in-
terval [0, 1]. In general, Neural Utility Functions are fairly
robust to differing values of λ and that performance gener-
ally degrades near λ = 1.

function of λ are reported in Figure 2. Overall, the proposed
framework is fairly robust to the selection of λ. We generally
advise smaller values as they tend to yield better empirical
results. In our experiments, we generally choose λ = .1 for
explicit tasks and λ = .5 for the implicit tasks.


