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ABSTRACT
Understanding content at scale is a difficult but important problem
for many platforms. Many previous studies focus on content un-
derstanding to optimize engagement with existing users. However,
little work studies how to leverage better content understanding to
attract new users. In this work, we build a framework for generat-
ing natural language content annotations and show how they can
be used for search engine optimization. The proposed framework
relies on an XGBoost model that labels “pins” with high proba-
bility phrases, and a logistic regression layer that learns to rank
aggregated annotations for groups of content. The pipeline iden-
tifies keywords that are descriptive and contextually meaningful.
We perform a large-scale production experiment deployed on the
Pinterest platform and show that natural language annotations
cause a 1-2% increase in traffic from leading search engines. This
increase is statistically significant. Finally, we explore and interpret
the characteristics of our annotations framework.
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1 INTRODUCTION
Understanding content at scale is a difficult yet important problem
for many organizations. A system that can automatically and effec-
tively understand content is better at connecting users with what
they care about. In turn, this drives retention and new user growth.
One approach to scalable content understanding is through the
extraction of natural language key phrases. These key phrases char-
acterize and describe the content in a way that a human can easily
understand. In this paper, we study how natural language annota-
tions can help drive new user traffic via search engine optimization
(SEO).

The virtue of relying on a natural language approach to char-
acterize content, is that the output can easily be represented in a
way that is both human and machine readable. A vector of natural
language key phrases and their corresponding scores can be treated
as a distribution of topics [3], or as an embedding vector [6]. An
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Annotation Score

Figure 1: An example “pin” and its corresponding top 25 annota-
tions. This pin contains an image comparing five popularmarathon
courses (left). We also display the pin annotations that best describe
this content (right). Each annotation, is a short, n-gram phrase with
a corresponding confidence score. The top-ranked annotations in-
clude, “marathon”, “boston marathon”, etc.

algorithm can then compute item-to-item similarities using a vector
similarity measure. Moreover, a human can easily understand the
output in his or her own natural language. Such annotations can
better capture the interest of new and existing users by summa-
rizing key features of content, which drives user engagement and
growth.

Most existing work focuses on how to better engage users within
a platform. For instance, classical matrix factorization methods em-
bed users and items to recommend relevant content to users [10].
More recently, users and items are embedded using deep neural
networks [11] for recommendation. Less work has studied how to
best leverage content understanding to attract new users. Organic
traffic from search engines is a key mechanism through which
platforms can attract new users. The process of increasing organic
search engine traffic is known as search engine optimization (SEO).
One key strategy to SEO is to produce content keywords, or meta
tags, that match popular search queries [1]. Meta tags are short
phrases embedded in source code that describe a page to the search
engine [14]. Therefore, in this paper we study the problem of auto-
matically generating content annotations that can serve as meta
tags for search engine optimization.

However, understanding content with natural language in a way
that drives traffic from search engines is challenging. For one, it is
difficult to identify what features of keyword phrases will cause a
potential user to click a link to the platform. Such a decision process
is subjective and user specific. Thus, in many cases there is no
unambiguously correct answer; one ofmany keyword phrases could
equally describe a picture, text, or video. Additionally, generating
annotations at scale, and across many language, is difficult.

https://doi.org/10.1145/3366423.3380049
https://doi.org/10.1145/3366423.3380049


WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Jenkins, et al.

Therefore, we design a framework to solve these challenges. We
design a pipeline that learns to label content with semantically
meaningful and descriptive phrases. By relying on an XGBoost
model that labels content with text phrases, an aggregation layer,
and a logistic regression layer that learns to rank, our pipeline
produces content annotations that are descriptive and leverage user-
defined context. We deploy an A/B test of our pipeline at Pinterest,
one of the world’s largest content recommendations systems and
home to over 300 million users.

In summary, our contributions are:
• We propose a framework for generating keyword phrases
for content called ‘annotations’

• The proposed pipeline identifies semantically meaningful
phrases that are 1) descriptive and specific, and 2) leverage
important contextual information

• We deploy an extensive, online experiment on the Pinterest
platform and show that, when used as meta tags for SEO, the
proposed annotation pipeline increases traffic from Google
search 1-2%, which is a statistically significant result

The rest of the paper is organized as follows: section 2 formalizes
and defines the problem, section 3 provides a detailed description
of the proposed framework, section 4 presents experimental results,
section 5 discusses related work, and section 6 summarizes our
findings.

2 PROBLEM DEFINITION
The primary goal of the current work is to produce natural lan-
guage keywords that describe a set of user generated content. These
“annotations” should be both accurate and specific. In this section
we define the content annotation problem in terms of inputs and
outputs. The input to our problem is a set of pins, and set of boards.
The output is a ranked list of annotations for each board.

Definition 2.1 (Pin). A "pin" is a bookmarked webpage that col-
lects important metadata from the page. We observe a set of pins,
P = {pi : i <= n}, where n is the total number of pins. Each pi
is composed of important metadata including an image, link, title,
and description, pi = ⟨di ,bj ⟩ where di is a vector of metadata and
bj is an associated board.

Definition 2.2 (Board). A "board", bj is a collection of content
that a user finds interesting. The user might save content related
to an idea he or she wishes to create in real life, or simply as a
digital scrapbook. In our problem, we have a set of B = {bj :
j <= m}, where each board, bj is associated with a set of pins,
bj = {p1,p2, ...pn }. We also observe board metadata such as title,
or description.

Definition 2.3 (Annotations). An “annotation”, ak is a natural lan-
guage keyphrase, typically one to six words in length, that describes
a pin or a board. For each content type (e.g., board, pin), we observe
a set of q relevant candidate annotations, A = {ak : i <= q}. We
denote board annotations asAbj = {a1, ...aq } and pin annotations,
Api = {a1, ...aq }.

Definition 2.4 (Content Annotation for SEO). The content annota-
tion problem is defined as specifying a function, f , that maps a set
of annotations to an ordered list of length, t . The list,Api , contains
the top t most relevant annotations to board, pi .

A∗
pi = fp : Api → [a(1),a(2), ...,a(t )] (1)

Similarly, the list, Abj , contains the top t most relevant annota-
tions to board, bj .

A∗
bj
= fb : Abj → [a(1),a(2), ...,a(t )] (2)

The ultimate goal of the content annotation problem, is to pro-
duce a list A∗

bj
that is descriptive and captures semantic meaning

of board, bj .

3 METHODS
In this section, we propose a framework to solve the content anno-
tation problem. Our pipeline consists of two stages. First, we extract
pin-level annotations for fine-grained content understanding. Sec-
ond, we use two aggregation layers to produce annotations that are
more broadly relevant to the entire set of board-level annotations.
An overview of the entire pipeline is presented in figure 2.

3.1 Pin Annotations
We first present our framework for extracting pin-level annota-
tions, Api [13]. We discuss the annotations dictionary, candidate
generation, and the XGBoost model used for annotation scoring.

3.1.1 Dictionary. Annotations are limited to a finite vocabulary
which we refer to as the annotations dictionary. The advantage of
using such a dictionary over allowing annotations to be arbitrary
ngrams is that it guarantees the annotations will be valid and useful
phrases instead of misspellings (e.g., “recipies”), stopwords (e.g.,
“the”), fragments (e.g., “of liberty”) and generic phrases (e.g., “ideas”,
“things”). The dictionary contains popular topics that weremanually
entered by users as search queries, hashtags, etc. A significant
amount of human curation has gone into building the dictionary to
ensure its quality is maintained, and we periodically use heuristics
to trim out bad terms and use a spell checker to removemisspellings.
We have around 100,000 terms in the dictionary for each language.

3.1.2 Candidate Generation. From the dictionary described in sec-
tion 3.1.1, we generate a set of potential annotation candidates
for each pin, Api . First, a text language detector determines the
language of the text. Next each text string is tokenized with a
language-specific tokenizer. A sliding window is then used to gen-
erate all ngrams containing between 1 and 6 words in the text. The
ngrams are normalized by stripping out accents and punctuation
and then stemming or lemmatizing depending on the language. The
extracted annotations are canonicalized to reduce duplication (e.g.,
“sloth” is canonicalized to “sloths” to reduce redundant annotations).
We maintain these canonical mappings in the dictionary.

3.1.3 Model. We use an XGBoost classifier to produce relevance
scores for each annotation candidate ak ∈ Api . The model is
trained using a crowd-sourced data set where human annotators
are asked to judge for a given pin, annotation pair, ⟨pi ,ak ⟩ whether
the annotation is relevant to the pin; e.g.,y ∈ {0, 1}. Around 150,000
labels per language comprise our training data set.

Once a set of candidate annotations,Api , has been generated we
extract annotation-level features and feed them into an XGBoost
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Figure 2: The proposed content annotation pipeline. A given board is associated with a collection of pins. First, for each pin we generate
candidate annotations from a dictionary. We then extract features for each candidate pin-annotation pair (e.g., TF-IDF, cosine similarity).
We then input the featurized pairs to an XGBoost classifier trained to predict whether the phrase is relevant or not. To summarize this fine-
grained content understanding, we average these scores over pins to the board level. We then train a logistic regression layer to learn to rank
the annotation scores such that descriptive and contextual annotations are surfaced.

classifier for scoring. The features we use in our XGBoost model
are the following:

• TF-IDF Term Frequency - Inverse Document Frequency
• Embedding similarity — cosine similarity between a pin
embedding and annotation embedding. The annotation em-
bedding is a pretrained ConceptNet embedding [12] and the
pin embedding is the average of the annotation embeddings
for the given pin’s candidate annotations

Once the features, xk , for a candidate annotation have been
extracted, the samples are fed into the XGBoost classifier to produce
a predicted probability, or score, ŝik , that the annotation, ak , is
relevant to pin pi .

ŝik = P(yi j = 1|xk ) (3)
The higher the value of ŝik , the better the annotation is at describ-

ing the content of the corresponding pin. We can sort annotations
on ŷik and take the top k to produce the more relevant pin annota-
tions, A∗

pi .

3.2 Board Annotations
Previously, we discussed computing pin-level annotations, A∗

pi .
These annotations are very fine-grained and describe individual
pieces of content. Next, we complete our pipeline by aggregating
fine-grained pin annotations to the board level. Doing so allows us
to summarize many co-occuring items of content simultaneously.
This framework consists of two key layers. In layer one, we perform
a naive aggregation wherein we compute an annotation score aver-
aged over pins. Next, we train a learning-to-rank logistic regression
model to sort the annotation scores and surface more descriptive
and more relevant annotations.

3.2.1 Naive Aggregation. To aggregate pin annotations to the board
level we compute the arithmetic mean over pins:

s
(1)
jk =

1
n

n∑
i=1

si jk (4)

Where, s(1)jk denotes the score. This simple aggregation summa-
rized the pin-specific information to the board-level. For simplicity,
we refer to this as the layer-1 score, or L-1 score. The superscript in
equation 4 refers to the first ranking layer. However, aggregating
by the mean scores alone tends to yield very broad, or generic anno-
tations. For example, the top annotation in figure 1 is “marathon”,
a somewhat broad term. Perhaps a more descriptive phrase such
as “marathon courses” would be a better description of the pin. We
need a way of intelligently ranking the board annotations without
losing important term specificity.

3.2.2 Learning-to-rank model. To this end, we train a learning-to-
rank logistic regression model that predicts whether or not a given
annotation, ajk is relevant to the entire board. Similar to section
3.1.3, we crowdsource a human labelled data set where annotators
are asked to label pairs of annotations. The task for the labeller
is then to choose which of two annotations better describes the
board content. Given two annotations, aj1 and aj2 for board bj , the
relevance determines the label. If rel(aj1,bj ) > rel(aj2,bj ), then
yjk = 1 and 0 otherwise. This pairwise approach is useful because
people tend to be better at judging the relative relevance of items,
rather the absolute relevance [10] [5].

With this pairwise data set we can train our ranking model. We
specify the model to learn the relevance:

s
(2)
jk = P(yjk = 1|xj1,xj2) (5)

We difference the feature values to compute the pairwise ranking
scores following the RankNet procedure [4]:
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s
(2)
jk = σ (д(xj1) − д(xj2)) (6)

where д is a linear scoring function д(x) = xjkw⊤ + b. We refer
to this quantity, s(2)jk , as the L-2 score, or the score from the sec-
ond ranking layer. The main purpose of the model in equation 5
is to predict annotation relevance conditioning on the mean score
computed in 4, as well as other features that might help the model
discover more specificity. We explore other features in our experi-
ments section (4.1).

3.2.3 Output. The proposed framework described above outputs
a list t of annotations for each board, ranked by relevance score:
A∗
bj
= [a(1),a(2), ...,a(t )]. This computed relevance score captures

term specificity as well as important contextual information.

4 EXPERIMENTS
In this section, we first discuss our training and selection procedure
for the ranking model described in equation 5. We then deploy
the proposed pipeline into the Pinterest ecosystem for 30 days and
observe the differential impact on search engine traffic. Finally, we
provide a case study of a board and its corresponding annotations.

4.1 Ranking Model Selection
The learning-to-rank model in equation 5 models the board-level
annotation relevance score, ŷik , as a function of annotation features.
Using the data set described in section 3.2.2 we perform an offline
experiment to choose the optimal feature set. Using 5-fold cross-
validation, we test five feature sets and a naive baseline in terms of
accuracy, ROC (AUC), precision, and recall.

4.1.1 Features. We evaluate combinations of the following fea-
tures:

• L1-score The L-1 scores computed over pins in equation 4.
• Log IDF The log of the inverse document frequency com-
puted over the dictionary. Words that are more rare, or pos-
sibly more specific, have a higher IDF.

• Term in boardWhether or not the annotation, ajk appears
in the board title or board description. This feature captures
important contextual clues. In many cases, the user provides
text that is a useful description of the content.

• Term in board * log IDF An interaction between ‘term in
board’ and log IDF. Intuitively, if a word is rare and also
appears in the board title or description, it will receive extra
weight.

• L1-score * log IDF An interaction between ‘term in board’
and the L1-score. If a word has a high L-1 score and is also
rare, it should receive extra weight.

In addition to different combinations of these features, we also
compare to a naive baseline, which is to always choose the annota-
tion with the higher L-1 score.

4.1.2 Results. The results are reported in table 1. Both the mean
and standard deviation across each fold of the cross-validation
scheme are provided. In general, the naive baseline that does not
use the logistic ranking model performs poorly at predicting the
labels from human annotators. It’s prediction accuracy and ROC

(AUC) are both around 0.5. The logistic regression ranking performs
fairly well across all feature sets. In particular, the combination of
L-1 score, log IDF, ‘term in in board’, and the interaction between
L-1 score and log IDF performs better than or equal to all other
models in terms of accuracy, ROC (AUC), and precision. Specifically,
we observe that the addition of the interaction term gives it a
slight improvement over the more simple model in the second
row of table 1. This suggests that phrases that are both rare and
have high average score from the first layer are predictive of what
human annotators think. This helps the learning-to-rank model
discover key terms that are also specific. We choose this model for
deployment in a our online experiment.

4.2 Online SEO experiment
We deploy the annotations in a large-scale production environment
at Pinterest for a period of 30 days. Each potential visitor on Google
search is assigned to either a treatment group (10%), or a control
group (90%).

4.2.1 Treatment Group. 10% of users are assigned to the treatment
group. In our experiment, the treatment setting is the use of anno-
tations from the proposed pipeline as the meta tags embedded in
the web page source code.

4.2.2 Control Group. 90% of users remain in the control group. In
our experimental design, the control is the use of the existing meta
tags. These meta tags are produced using broad heuristics to sum-
marize the text of a page. Specifically, text data is collected across
all pins on a board. Each annotation is then scored by tf-idf. The top
three annotations by tf-idf are used as the meta-tags. For example,
most existing meta tags take the structure, “number_of_pins best
pictures of topic”.

4.2.3 Evaluation. We evaluate the deployed pipeline (treatment)
using the metrics listed below. All differences are calculated as
difference = treatment - control.

• sess. diff The percentage difference in session activity
directed from Google search. This is computed across all
device types.

• crawled sess. diff The percentage of unique pages that
have received traffic from Google and have been crawled by
Googlebot. This is computed across all device types.

• sess. diff (desktop)The percentage of unique pages that
have received traffic from Google and have been crawled by
Googlebot. This is computed across desktop devices only.

• sess. diff (mobile) The percentage difference in session
activity directed from Google search for mobile devices.

• crawled sess. diff (desktop) The percentage of unique
pages that have received traffic from Google and have been
crawled by Googlebot. Desktop devices only.

• crawled sess. diff (mobile) The percentage of unique
pages that have received traffic from Google and have been
crawled by Googlebot. Mobile devices only.

4.2.4 Results. The results for the online SEO experiment are shown
in two tables: results from days 1-15 are shown in table 2 and results
from days 16-30 in table 3. In our experimental design, two features
ensure that the results are robust to random noise. First, we run the
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Features Accuracy ROC (AUC) Precision Recall
Naive (L-1 score) 0.498 (0.00) 0.500 (0.00) 0.770 (0.05) 0.699 (0.02)

L-1 score, log IDF, term in board 0.763 (0.01) 0.845 (0.03) 0.795 (0.05) 0.731 (0.02)
L-1 score, log IDF, term in board, term in board * log IDF 0.758 (0.01) 0.843 (0.02) 0.785 (0.04) 0.731 (0.02)

L-1 score, log IDF, term in board, score * log IDF, term in board * log IDF 0.758 (0.01) 0.844 (0.03) 0.777 (0.04) 0.742 (0.01)
L-1 score, log IDF, term in board 0.703 (0.07) 0.768 (0.05) 0.724 (0.07) 0.664 (0.10)

L-1 score, log IDF, term in board, L-1 score * log IDF 0.763 (0.01) 0.846 (0.03) 0.795 (0.05) 0.731 (0.02)
Table 1: Results from our model selection procedure using 5-fold cross-validation. Each model is evaluated on pairwise sets of board anno-
tations. The task is to predict which annotation is most relevant to the board in each pair. The means and standard deviations are reported
for accuracy, ROC (AUC), precision, and recall. We compare five logistic regression feature sets to a naive baseline of using the L-1 score rank.
Including the interaction term “term in board” * log IDF yields small gains in ROC (AUC). We use the feature set from the bottom row in our
online experiment.

Table 2: Online SEO experiment results: day 1 - 15. All metrics are percentage differences of the treatment relative to control (e.g., diff =
treatment - control). Figures with two stars (e.g., 1%∗∗) are statistically significant at the 95% confidence level.

metric

da
y
1

da
y
2

da
y
3

da
y
4

da
y
5

da
y
6

da
y
7

da
y
8

da
y
9

da
y
10

da
y
11

da
y
12

da
y
13

da
y
14

da
y
15

sess. diff 0% 0% 1%∗∗ 0% 0% 0% 1%∗∗ 0% 0% 0% 1%∗∗ 1%∗∗ 1%∗∗ 1% 0%
crawled sess. diff 0% 0% 1%∗∗ 1% 0% 0% 1%∗∗ 1% 0% 1% 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%
sess. diff (desktop) 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
sess. diff (mobile) 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%∗∗ 1% 1% 1% 1%

crawled sess. diff (desktop) −1%∗∗ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
crawled sess. diff (mobile) 0% 1%∗∗ 1%∗∗ 1% 1% 1% 1% 1% 1% 1% 2%∗∗ 2%∗∗ 1% 1%∗∗ 1%

Table 3: Online SEO experiment results: day 16 - 30. All metrics are percentage differences of the treatment relative to control (e.g., diff =
treatment - control). Figures with two stars (e.g., 1%∗∗) are statistically significant at the 95% confidence level. We observe 15 consecutive days
of statistically significant increases in traffic coming to the platform from Google search in the latter half of the experiment.

metric

da
y
16

da
y
17

da
y
18

da
y
19

da
y
20

da
y
21

da
y
22

da
y
23

da
y
24

da
y
25

da
y
26

da
y
27

da
y
28

da
y
29

da
y
30

sess. diff 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗

crawled sess. diff 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 2%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗ 1%∗∗

sess. diff (desktop) 1% 1% 1%∗∗ 1%∗∗ 1% 1% 1% 1% 0% 0% 1% 1%∗∗ 1% 1%∗∗ 1%∗∗

sess. diff (mobile) 1% 1% 1% 0% 1%∗∗ 0% 0% 1% 0% 1% 0% 0% 0% 0% 0%
crawled sess. diff (desktop) 1% 1% 1% 1% 1%∗∗ 1% 0% 1% 1% 0% 0% 1%∗∗ 0% 1% 1%∗∗

crawled sess. diff (mobile) 1% 1% 1% 1% 1%∗∗ 1% 0% 1% 1% 0% 0% 1%∗∗ 0% 1% 1%∗∗

experiment for a full 30 days. Such a long window reduces the risk
that changes are due to extraneous factors instead of the treatment.
Second, we test each metric for statistical significance at the 95%
confidence level. Figures reported with two stars (e.g., 1%∗∗) are
statistically significant.

The results from tables 2 and 3 demonstrate that the proposed
annotations pipeline causes 1%-2% increase in traffic from Google
search. The first two lines of the tables show sessions and page
visits across all devices. Both metrics, sess. diff and crawled
sess. diff see generally positive increases over the first 15 days.
Both see a statistically significant increase of 1% in 6 of 15 days.
During the second half of the experiment we see the best results.
For sess. diffwe see a statistically significant 1% increase in each
of the 15 days. We observe even better results for crawled sess.
diff: 14 of 15 days result in a 1% increase and day 20 sees a 2%
increase. All of these results are significant. The other metrics give
insight into what type of users are most sensitive to the deployed

annotations. In general, traffic from mobile users tends to be higher
than desktop.

These results show that the automated pipeline discussed in sec-
tion 3 for generating natural language content annotations drive an
increase in traffic fromGoogle search relative to simpler keyphrases.
These results are robust and statistically significant. Moreover, the
annotations may attract more users on mobile devices compared to
desktop.

4.3 Case Studies
In this section we perform a case study of the proposed annotations
pipeline. In particular, we analyze differences in L-1 and L-2 scores
relative to the content of a single board. This case study helps us
gain insights into why the learning-to-rank model is necessary for
producing better content descriptions.

In figure 3 we show content from an actual board, titled "San
Francisco" (left). Additionally, we show the top 25 L-1 scores and
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L-1 Scores L-2 Scores

Figure 3:An example board is displayed (left), alongwith the L-1 (center) and L-2 annotation scores (right). A green plusmeans the annotation
rank increased from L-1 to L-2, while the red negative indicates the rank decreased. The example board contains pins related to travel tips
and tourist sites around San Francisco, CA. The top two annotations for both L-1 and L-2 scores are “california travel” and “california road
trips.” However, L-1 scores tend to yield more broad, or generic terms such as “travel”, “trip”, or “trek.” Conversely, L-2 scores surface more
descriptive terms. such as “west coast road trip” or “san fransisco with kids.” The logistic regression ranking layer helps identify more specific
and semantically meaningful annotations. These semantic refinements are likely what drives more user traffic from Google search

their annotations (center) as well as the L-2 scores (right) and their
corresponding annotations. A green plus means the annotation
rank increased from L-1 to L-2, while the red negative indicates
the rank decreased. The example board in figure 3 contains pins
related to travel tips and tourist sites around San Francisco, CA.
We can see that the top two annotations are “california travel” and
“california road trips.” Both of these terms seem to capture the
semantic meaning of the board. We also note that the L-1 scores
tend yield more broad, or generic terms such as “travel”, “trip”, or
“trek.” Conversely, the L-2 scores surface more descriptive terms.
Take for example, “west coast road trip”; this term is ranked 8 places
higher in L-2 compared to L-1. Additionally, the L-2 scores capture
user-provided semantic information. The term “San Francisco”,
the user-generated title of the board, is ranked 3rd under the L-2
scheme, and 10th in the L-1 scheme. Finally, the L-2 scores can
capture interesting, fine-graned semantic understanding. The term
“san francisco with kids” appears in the L-2 top 25, but not in L-1.
Further inspection of this board reveals that two or three pins link
to articles recommending family friendly sites to see in the Bay
Area.

5 RELATEDWORK
The current work touches on two major streams of literature: 1)
text generation and 2) search engine optimization.

5.0.1 Text Generation. Text generation has been studied for many
years by the NLP community. Twomain areas in the domain include
image captioning, and deep generative modeling. Hu et al. [8] pro-
pose a neural generative model based on variational auto-encoders
to generate sentences controlled by semantic structure. Many stud-
ies seek to generate a descriptive caption given an input image. You
et al. [15] propose a recurrent neural network approach that learns
text and image semantics through an attention mechanism. Other

work proposes learning a multi-modal embedding over images and
text to generate captions in an RNN framework [9]

5.0.2 Search Engine Optimization. Search engine optimization re-
search is an important problem in marketing, although formal
academic research is somewhat scant. Recent work studies SEO for
both sponsored (paid) and organic search results. They find that
in the absence of sponsored search, investment in SEO improves
a page’s organic ranking when the page quality is high [2]. Other
work studies consumer response to sponsored search and identifies
key features of advertisements that drive click-through rates [7].

6 CONCLUSION
In this paper we proposed a framework for describing content at
scale with natural language annotations. These annotations are both
descriptive and specific, and also leverage important user-provided
context. Such annotations are useful for a variety of purposes; we
experimentally show that they can be used as keyword tags for
search engine optimization. Specifically, we deploy an extensive on-
line experiment at Pinterest and show that the annotations from the
proposed pipeline increases traffic from Google search 1-2% as com-
pared to more generic tags. Moreover, we observe 15 consecutive
days of statistically significant results.
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